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Adopt machine learning algorithms to learn representation and 
classier incrementally without storing all the previous data.
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1.iCaRL [1] 

2.GAN based incremental learning. 

3.Distilling knowledge in neural networks. 

[1] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation 
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , pages 2001–2010, 2017
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• Real-time computation for threshold moving. 

• Conditional Generative Adversarial Networks. 

• Privacy Preserving Incremental Learning.

Proposed Methodologies 
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• Instead of using NMC, scale the Softmax classifier 
by a vector to remove bias.  

Proposed Methodologies 



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

VECTOR COMPUTATION 
ALGORITHM

 21

Proposed Methodologies 



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

VECTOR COMPUTATION 
ALGORITHM

 22

Proposed Methodologies 

Scale factor 



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

Threshold Moving on MNIST

 23

Proposed Methodologies 



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

 24

Proposed Methodologies 

Threshold Moving on MNIST



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

 25

Proposed Methodologies 

Threshold Moving on MNIST



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

 26

Proposed Methodologies 

Threshold Moving on MNIST



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

Threshold Moving

 27

Softmax Classifier Softmax Classifier Scaled
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• Idea 2.0: Store instance features
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https://www.researchgate.net/profile/Luiz_Gustavo_Hafemann/publication/279181075/figure/fig8/AS:613923078275131@1523382076826/The-Deep-
Convolutional-Neural-Network-architecture.png
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• Idea 2.0: Store instance features

• Fix initial layers and store its features for all 
original class instances

Proposed Methodologies 
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• Khurram Javed

• Bias removal through Scale computation

• Supervision on GAN-based Approach

• Analysis of existing literature

• Talha Paracha

• Privacy Preserving Strategies 

• Analysis of existing literature

Timeline and achieved milestones
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• iCaRL paper implementation. 

• GAN based Incremental Learning.

• Adversarial Instances based Incremental Learning. 

• Real-time scale computation. 

Software engineering aspect
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• Support for multiple datasets.

• Support for multiple models.

• Support for logging, and plotting. 

• Support for reproducibility.

Software engineering aspect
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• Support for logging, and plotting.

Experiment Plot Confusion Matrix
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• Support for reproducibility.
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• PyTorch

• Why not TensorFlow? 

• Dynamic Graph vs Static Graph

• Extensive Use of Git

• CUDA 9, CuDNN, Ubuntu 16.04

• Google Compute Cloud

Software engineering aspect

Talha Paracha




NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

MODERN TOOL USAGE

 66

• Git / Github

• Over 1,000 commits 

• CUDA 9, CuDNN, Ubuntu 16.04

• Google Compute Cloud

Software engineering aspect
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• Ubuntu 16.04, CUDA 9, CuDNN, Bash, Vim, 
Google Compute Cloud 

Software engineering aspect
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1253 Hours of GPU compute on Google Cloud (NVIDIA K80) 

Software engineering aspect
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380 Hours of GPU compute on TUKL Lab Hardware

> GTX Titan X
> GTX 1060
> GTX 970 

Software engineering aspect
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• Travis CI

Software engineering aspect
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• Object Oriented Paradigm.

• Ability to add new datasets and models without 
modifying existing code. 

• Python3 standards official guidelines (lower_case 
variables, camelCase functions etc) 

Software engineering aspect



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

INTUITIVE INTERFACE

 74

Software engineering aspect



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY Software engineering aspect

Feedback when running



NATIONAL UNIVERSITY OF 
SCIENCES AND TECHNOLOGY

CLOSING THE PROJECT

 76

• Submitting two papers in BMVC 2018 (Deadline 7th May).

• One paper with analysis of SOTA, threshold moving 
algorithm, and privacy preserving. 

• Other paper on the Cond-GAN based approach. 

• Releasing the code to public. 

• Continuation of the project over the summer. 
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