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ABSTRACT
TLS certificate pinning is a security mechanism used by applications
(apps) to protect their network traffic against malicious certificate
authorities (CAs), in-path monitoring, and other methods of TLS
tampering. Pinning can provide enhanced security to defend against
malicious third-party access to sensitive data in transit (e.g., to
protect sensitive banking and health care information), but can also
hide an app’s personal data collection from users and auditors. Prior
studies found pinning was rarely used in the Android ecosystem,
except in high-profile, security-sensitive apps; and, little is known
about its usage on iOS and across mobile platforms.

In this paper, we thoroughly investigate the use of certificate
pinning on Android and iOS. We collect 5,079 unique apps from the
two official app stores: 575 common apps, 1,000 popular apps each,
and 1,000 randomly selected apps each. We develop novel, cross-
platform, static and dynamic analysis techniques to detect the usage
of certificate pinning. Thus, our study offers a more comprehensive
understanding of certificate pinning than previous studies.

We find certificate pinning as much as 4 times more widely
adopted than reported in recent studies. More specifically, we find
that 0.9% to 8% of Android apps and 2.5% to 11% of iOS apps use
certificate pinning at run time (depending on the aforementioned
sets of apps). We then investigate which categories of apps most
frequently use pinning (e.g., apps in the “finance” category), which
destinations are typically pinned (e.g., first-party destinations vs
those used by third-party libraries), which certificates are pinned

∗Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’22, October 25–27, 2022, Nice, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9259-4/22/10. . . $15.00
https://doi.org/10.1145/3517745.3561439

and how these are pinned (e.g., CA vs leaf certificates), and the
connection security for pinned connections vs unpinned ones (e.g.,
the use of weak ciphers or improper certificate validation). Lastly,
we investigate how many pinned connections are amenable to
binary instrumentation to reveal the contents of their connections;
for those that are, we analyze the data sent over pinned connections
to understand what is protected by pinning.
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1 INTRODUCTION
Mobile applications (apps) are extremely popular – 230 billion apps
were installed on devices in 2021 [47] alone – and often transmit sen-
sitive data over the Internet to deliver their service (e.g., credentials,
financial and health information). Thus, network connection secu-
rity is critically important in this context. While the standard TLS
PKI provides sufficient security for most apps, several classes of at-
tacks have revealed gaps in its protection: tampered, misconfigured,
or poorly maintained certificate authority (CA) root stores [50]
can enable highly targeted or large-scale monkey-in-the-middle
(MITM) attacks [21, 22]. To address this issue, app developers and
third-party libraries can use certificate pinning, which establishes a
developer-specified relationship between a hostname and its cryp-
tographic identity (certificate or hash of the public key)—one that is
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typically hard-coded (hence “pinned”) and that adds another layer
of security compared to certificate validation that uses only the
trusted system CA root store.

Although beneficial from a security standpoint, pinning is known
to introduce maintenance overheads, misconfiguration errors, and
other problems which could expose users to more attacks. Unfor-
tunately, there is no clear community consensus on whether the
benefits of pinning outweigh potential risks ofmisconfiguration and
developer errors. On the web, it was first introduced in 2011 [35],
but has since been deprecated by all major desktop and mobile
browsers [23]. Android officially supports pinning since version 4.2
(released in 2012) [29], but has since moved to not recommending
pinning due to the risk of app breakage when server configurations
change [15, 30]. Apple does not provide clear recommendations for
iOS, but notes that pinning might be necessary to meet regulatory
requirements [19], and recommends long-term strategies to handle
certificate changes. More generally, OWASP, a community-driven
approach to establish app security testing standards and guidelines,
advocates for pinning [39] against sophisticated attacks in its Mo-
bile Application Security Verification Standard (MASVS), which
is frequently used for app security audits. In fact, MASVS is the
basis for independent security testing that developers can now (op-
tionally) perform and showcase in the Google Play’s Data safety
section [17]. It is, therefore, vital to know whether app developers
implement certificate pinning; and to identify common deployment
errors that could compromise apps’ security.

In this work, we provide the first multi-perspective look at certifi-
cate pinning, by developing more complete methodologies for detecting
it that leverage the complementary strengths of static and dynamic
analysis, characterizing its prevalence across iOS and Android, and
investigating the implications of observed implementations. We de-
velop novel static and dynamic techniques to detect and measure
the adoption of pinning. Specifically, our methodology includes
more complete rules for searching app binaries for evidence of cer-
tificates or pinning APIs, an analysis of which code is responsible
for pinning, as well as run-time analysis that reliably distinguishes
pinned connections from other confounding types of TLS connec-
tion behavior. Our work builds upon and extends prior work in this
space [26, 38, 41, 42], as we discuss in detail in Section 2.2.

We run our detection techniques on multiple datasets of apps,
allowing us to understand the prevalence of certificate pinning
according to various criteria. These datasets consist of 575 apps
present on both platforms, 1,000 popular apps on each platform, and
a random selection of 1,000 apps from each of their respective main
app stores, the Play Store and the App Store (5,079 unique apps in
total). Our analysis pipeline allows us to identify that pinning is
not at all negligible: 6.7% (Android) and 11.4% (iOS) of popular apps
use pinning at run time. Further, we find substantial differences
between platforms when it comes to the prevalence of pinning, the
consistency of pinning for the same app in iOS and Android, and
the connection security of those pinned apps. This comparative
analysis allows us to investigate whether developers and third-party
SDK providers systematically use pinning as a security mechanism
across their products, regardless of the platform.

We then investigate which categories of apps most frequently
use pinning (apps in the “finance” category), which destinations are
typically in pinned connections (first-party destinations vs those

used by third-party libraries), which certificates are pinned and how
they are pinned (CA vs leaf certificates), and the connection security
for pinned connections vs unpinned ones (e.g., the use of weak
ciphers or improper certificate validation). Last, we investigate how
many pinned connections are amenable to binary instrumentation
for revealing the contents of their connections, and for those that
are, we analyze the data sent in pinned connections to understand
what is protected by pinning.
To summarize our key results:
• We find a wide range of prevalence for potential and actual
pinning, with 11.4% of popular iOS apps and 6.7% of popular
Android apps using pinning in our dynamic tests. Static analysis
reveals even more potential pinning (up to 27% on Android and
33% on iOS). Pinning is much less prevalent in randomly selected
(i.e., less popular) apps (0.9% of Android and 2.5% of iOS apps).

• Of the 27 apps that pin on both iOS and Android, fewer than
half (13) do so consistently across platforms.

• If an app uses pinning, it does so selectively, usually on a small
fraction of the domains contacted. The majority of destinations
that are pinned are third-party sites. This finding is also sub-
stantiated by our code analysis, in which we find pinning most
commonly in third-party libraries (social networks, payment
processing, and app analytics).

• When certificates are pinned, the vast majority are certificates
using the default PKI (as opposed to a custom one) i.e., the leaf is
signed (directly or indirectly) by a CA available in one or more
public root stores. Nearly three quarters of the pinned certificates
are CA certificates, with the remaining being leaf certificates.

• For the connections for which we could disable pinning, we
found no statistically significant increase in PII compared to non-
pinned connections, with the exception of Advertiser IDs on
iOS. This indicates that pinning is not typically used to protect
(non-credential) PII, or to hide the collection of such information.

To support reproducibility and facilitate further research in the
area, we make our dataset and code publicly available at:
https://github.com/NEU-SNS/app-tls-pinning.

2 BACKGROUND AND MOTIVATION
2.1 Definition of Pinning
During a TLS handshake, clients obtain a certificate chain (ordered
list of certificates) from servers, where each certificate is signed
by the previous one. Clients trust the chain if they trust the root
certificate, and the signatures from the root (first) to the leaf (last)
are all valid. A root store or CA (certificate authority) store is a
collection of such trusted root certificates, which is included in
OSes including Android and iOS [36, 50].

Certificate pinning is an alternate to trusting OS root certifi-
cates, where apps include a custom certificate to be trusted (in their
source code or metadata in the app package), instead of the set of
certificates present on the OS. We define pinned certificates as such
custom certificates that must be present in the certificate chain to
successfully establish a TLS connection. These pinned certificates
could be any certificate in the chain, i.e., leaf, intermediate, or root
certificates. They could also be pinned in any form, i.e., storing the
entire certificate, a hash of the certificate, or some other identifier.

https://github.com/NEU-SNS/app-tls-pinning


A Comparative Analysis of Certificate Pinning in Android & iOS IMC ’22, October 25–27, 2022, Nice, France

Pinning for Protection: Mobile root stores are known to include
expired, unknown, or obscure CA certificates [50], which can ex-
pose clients to TLS interception attacks. An attacker with access
to the private key for a CA certificate in the system trust store can
use it to sign arbitrary certificates (for arbitrary domains) and trick
the client into accepting these malicious certificates as valid. Using
certificate pinning prevents such attacks by limiting certificate trust
to a pre-determined set of certificates instead of trusting a certifi-
cate issued by any CA certificate in the system trust store. Note
that certificate pinning not only protects against malicious actors,
but also against investigators and auditors seeking to analyze the
data exchanged between devices and servers (e.g., to understand
personal data exfiltration, cross-border data transfers, etc.).
Pinning for Customization: Certificate pinning enables develop-
ers to define a specific certificate to trust. This allows developers to
issue and sign their own trusted certificates instead of obtaining
one from a trusted third-party CA, thus regaining more control
over their internal certificates at the cost of limited utility since
custom CAs will not be trusted by browsers or other software that
does not trust the custom CA. Note, however, that verifying if a
pinned certificate is present in a chain is not sufficient to ensure
that the chain is correct; rather, the TLS library must still validate
all other properties of certificates (i.e., Common Name matching,
revocation checking, etc.) to protect against various other attacks.
Pinning and HPKP: Certificate pinning methods found in mobile
apps differ greatly from HTTP Public Key Pinning (HPKP). HPKP
is an obsolete technique for web browsers that allowed website
owners to specify pinned certificates for their domain. One key
reasonHPKPwas proposed is that website owners in general cannot
directly control the trust store for a browser, and HPKP gave them
a way to specify custom certificates for pinning on a domain. In
contrast, mobile services that use pinning can control both the client
software (the app) and the web servers they communicate with.
As such, there is no need for any additional protocol like HPKP to
specify how pinning should occur—mobile apps simply include the
pinned certificate material in the app code and/or metadata.

We also note that the threat models and stakeholders in the two
techniques are different. For HPKP, the website owner does not trust
the OS or browser root store, but assumes that browser will enforce
a specified pinned certificate. Further, HPKP trusts the first seen
certificate (and thus does not solve the problem for adversaries that
can intercept the first TLS connection) and also does not support
changing the pinned certificate. In contrast, mobile services that
use certificate pinning do not trust the OS root store, but trust that
the OS will faithfully execute its specified certificate validation and
pinning code. In addition, mobile services can change the pinned
certificate in numerous ways, e.g., by pinning a CA certificates
that can issue additional trusted leaf certificates, or releasing a new
version of the app with a new pinning specification.

2.2 Related Work
TLS Studies: Georgiev et al. [28] conducted one of the earliest
studies about TLS usage in non-browser software on multiple plat-
forms including Android and iOS. They found instances of insecure
TLS implementations on both Android and iOS, but did not find
any evidence of certificate pinning. An early study of TLS usage

on Android was conducted by Fahl et al. [26] in 2012. They devel-
oped static and dynamic analysis techniques to detect insecure TLS
implementations, and found 8% of apps to be vulnerable to MITM
attacks. While certificate pinning was not their focus, they per-
formed manual dynamic analysis on 20 cherry-picked high profile
apps and found 2 instance of pinning.

In 2017, Razaghpanah et al. [42] studied TLS usage by Android
apps using on-device traffic monitoring. They found 150 apps in
their dataset that implemented some form of pinning (2% of apps
analyzed). Further, they investigated pinning behavior in first and
third-party destinations, and made observations about the type
of apps that use pinning (i.e., social and finance apps). The key
differences between their work and ours are that they (a) study a
single platform using a single technique (dynamic analysis), and
(b) use an uncontrolled set of apps, sourced from 5,000 users who
downloaded the Lumen app and consented to their analysis.

Stone et al. [48] conducted a TLS study closely related to our
work. They studied 400 security-sensitive Android and iOS apps,
and presented a dynamic analysis technique to detect pinned con-
nections that fail to validate certificate hostnames. However, their
technique only finds apps that pin intermediate or root certificates
in the certificate chain. In contrast, our dynamic and static analysis
techniques cover all pinned certificates.
Android Network Security Configurations: In 2015, Android 6.0
introduced Network Security Configurations (NSCs) [25] that en-
able apps to customize certain network security settings. Oltrogge
et al. [38] studied NSC adoption using static analysis and found that
7.43% of 1.3M apps used NSCs; with only 0.67% (of the 7.43%) using
pinning. The authors reported pinning to be most common in apps
from the “finance” category, and that majority of pinned certificates
(≈63%) were root CAs (rather than leaf certificates). In this work, we
revisit such characteristics and find many similarities in our results.
Although the authors primarily employed static analysis, they also
performed manual dynamic analysis on a small set of 40 apps to
discover potential PII in plaintext HTTP connections. Possemato et
al. [41] studied Network Security Policies (a single line configura-
tion in the Android Manifest, or NSC files) and found that 13.02%
of 125k+ apps used these policies; with only 0.62% (of the 13.02%)
using pinning. Interestingly, they found instances of misconfigu-
rations related to pinning (e.g., example.com pinned, overridePins
attribute set to “true”). Although NSCs provide a simple way for de-
velopers to secure network connections, previous studies have seen
their adoption lacking. Since apps can use custom mechanisms to
pin certificates, relying solely on standard configuration files (like
NSCs) to understand pinning is inadequate. We utilize static NSC
analysis in this study, as a way to compare to previous techniques
and improve it with novel techniques to detect certificate pinning
implementations that have previously been unexplored.
Pinning Recommendations: Oltrogge et al. [37] devised tech-
niques to evaluate whether pinning is a suitable strategy for an
app. After analyzing 600k+ Android apps, they conservatively pro-
posed pinning for 1.8% of them. Although not their primary goal,
the authors used semi-automated static code analysis to infer the
prevalence of pinning, and found it to be merely ≈0.07% in their
dataset. They also surveyed 45 app developers to understand how
they perceive pinning—while only a quarter of these developers
knew about pinning, all of them found it too complex to use.
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Android iOS
Rank Random Popular Common Common Popular Random
1 Education 12% Games 36% Games 18% Games 18% Games 21% Games 15%
2 Games 12% Weather 2% Productivity 12% Productivity 14% Photography 11% Business 11%
3 Tools 6% Finance 2% Business 7% Business 8% Social 6% Education 11%
4 Music 6% Shopping 2% Communication 6% Social 7% Education 6% Food 7%
5 Books 6% Entertainment 2% Finance 6% Education 6% Finance 6% Lifestyle 7%
6 Business 5% Food 2% Education 5% Finance 6% Lifestyle 5% Utilities 6%
7 Lifestyle 5% Social 2% Social 5% Utilities 5% Entertainment 4% Entertainment 4%
8 Entertainment 4% Productivity 2% Health 4% Photography 4% Utilities 4% Health 4%
9 Travel 4% Photography 2% Travel 3% Health 3% Productivity 4% Travel 4%
10 Personalization* 4% Music 2% Lifestyle 3% Lifestyle 3% Weather 4% Shopping 3%

Table 1: An overview of our app datasets. We present the top 10 app categories from each dataset, along with their percentages
over the total number of apps in that dataset.

iOS Network Security Mechanisms: Due to the closed-source
nature of iOS, there is limited research on analyzing how iOS apps
adopt network security mechanisms. Tang et al. [49] studied se-
curity vulnerabilities in iOS apps that exist at the TCP/IP layer
layer due to open ports. Orikogbo et al. [40] studied the validity of
TLS certificates used by these apps. Both studies introduce novel
ways to build a corpus of iOS apps. Our work complements prior
research by using their app collection techniques and exploring
another aspect of network security: TLS pinning prevalence and
implementations in the iOS ecosystem.
Android vs iOS: Besides the limited number of iOS studies men-
tioned above, by far the majority of related work on security and
privacy issues in mobile apps focuses on the Android platform. Even
rarer is related work performing comparative studies between both
platforms: Han et al. [31] compared the usage of security sensitive
APIs for 2.6k cross-platform apps in 2013. Chen et al. [24] inves-
tigated the inclusion of potentially harmful third-party libraries
in 1.3M Android and 160K iOS apps in 2016 and found libraries
to show similarly risky behavior on both platforms. In the area
of privacy, Ren et al. [46] performed the first comparison of the
PII collected by the 100 most popular Android apps compared to
their iOS counterparts. Most recently, Kollnig et al. [34] performed
a comparative study of PII leakage and tracking in 12k apps from
each platform, concluding that neither platform is clearly better at
protecting user privacy. However, they considered connection secu-
rity out of scope and circumvented pinning (to the extent possible)
by disabling default certificate validation by the OS.

2.3 Study Goals
Our study is organized around the following key research questions,
which we answer in Section 5 based on the datasets presented in
Section 3 and methodology discussed in Section 4:

(RQ1) How can we reliably detect pinning and its prevalence in
mobile apps, in a platform-agnostic way?

(RQ2) What are the characteristics of apps that deploy pinning (pop-
ular vs unpopular apps, app categories, pinned destinations)
and what are their implications?

(RQ3) How consistently do developers use pinning across the An-
droid and iOS versions of the same apps?

(RQ4) How is pinning implemented (e.g., nature of certificate chains,
code that contributes to pinning)?

(RQ5) How secure is pinning in mobile apps? And what kind of
data is protected by pinning?

3 DATASETS
To understand the prevalence of pinning in different parts of the
Android and iOS ecosystems, we collect a wide and diverse range
of apps on both platforms. We group the apps in three different
datasets: popular apps, random apps, and “common" apps. The
“common" apps dataset contains the same app on Android and iOS,
thus enabling us to perform head-to-head comparisons of the two
platforms. We collect these apps at various points in time in 2021.

Collecting Android apps from the Google Play Store is simpler
than collecting iOS apps from the Apple App Store. For Android, we
use GPlayCLI [11] to download apps directly from the Play Store.
For iOS, we automate GUI interactions with the deprecated iTunes
12.6 application to download apps, based on previous work [40].
For more details about the challenges with iOS app crawls, we refer
the reader to Appendix A. We obtain the category of each app (e.g.,
gaming or finance) directly from the metadata set by the developers
and available in the respective stores.
Common Apps (n = 575): Linking apps present on one market
with those present on another is non-trivial. We create the set of
common apps using AlternativeTo [1]. This website crowdsources
information, recommendations, and reviews for software. Apps
listed on this website can have links to the Google Play Store and
Apple App Store if they are present on both platforms. We retrieve
≈1,000 app pages sorted by popularity on this website and look for
apps listed on both stores. Using this technique, we obtain 575 apps;
wemanually verify (on a small random sample of 30 apps) that these
apps are in fact the same. To respect community norms related to
crawling, we add our contact information in the User-Agent field,
and limit our crawler to request 1 page per second.
PopularApps (n = 1,000): For popular apps onAndroid, we use the
google-play-scraper [10] to crawl “Top Free" lists for each category
on the Google Play Store. We pick at random 1,000 apps from
these lists (≈12k in total). For iOS, we use the iTunes Search API
to fetch top apps using 19 generic category names as search terms
(e.g., productivity, finance, music). The API returns at most 100
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results per call. We repeat the process for each category and collect
unpaid apps that are compatible with our test device, compiling a
set of 1,000 apps. Both sets contain apps that capture the notion of
popularity for each store; they do not necessarily represent the top
1,000 apps for either platform. We note that we used the US version
of the app stores while compiling these listings.
Random Apps (n = 1,000): To compile a list of random apps,
we start out with fetching details about as many apps as possible.
Unfortunately, the list of all apps on either platform is not public.
For Android, we use a list of 1.35M app IDs compiled by prior
work [38]. For iOS, we crawl 1.25M app IDs from the official store
listings [18]. From each of these lists, we randomly select 1,000 apps
and download them from the respective stores. We believe that the
large size of our lists provides a sufficient degree of randomness.

We perform all crawls from North America; We collected the
Common and Popular sets from February to May 2021, and the
Random sets in October 2021. Due to our app collection technique,
we see app collisions between the three sets; in such cases the same
app is used in the sets they appear in. Accounting for collisions, we
collect 2,564 unique apps for Android (11 collisions for Common
and Popular sets). For iOS we collect 2,515 unique apps (60 collisions
for Common and Popular sets). We see no collisions between the
Random app set and other sets on either platform. Thus in total,
we collect 5,079 unique apps, counting Android and iOS apps as
different apps for the Common set.

4 METHODOLOGY
In this section, we detail the novel static and dynamic approaches
we use to detect certificate pinning (RQ1) as well as to shed light
on the implementation aspects related to it. Figure 1 presents an
overview of our methodology.

4.1 Static Analysis
Static analysis involves studying apps without actually executing
them. In this section, we discuss the parts of apps we study and the
exact techniques used to infer whether certificate pinning is being
implemented across apps.

4.1.1 Configuration Files. In Android, Network Security Configu-
ration (NSC) files are used to customize network security settings
without having to modify app code [25]. This technique allows apps
to define general security settings or per-domain settings, with the
option to specify certificates to trust, and to pin certificate hashes.
We use static analysis to extract the Android Manifest file, which we
parse to check if an app is using an NSC. If it is found, we extract
the pertinent configuration file and parse that to obtain certificates
and hashes that the app uses, extracting files as needed.

In iOS, App Transport Security Settings provide a similar feature
of specifying pinned hashes in an app’s configuration files [20]. We
note that it is a recent feature introduced in iOS 14 in September
2020, and is unavailable in the version of iOS used in our study.
Because this feature was released close to our data crawls, we do
not check for its prevalence in our datasets.

4.1.2 Embedded Certificates. Pinning implementations typically
specifywhich certificates to pin in an app code. Therefore, we search
for these certificates in app code by looking for any files ending with

.der, .pem, .crt, .cert, and .cer extensions, or by extracting strings with
delimiters such as “-----BEGIN CERTIFICATE-----”. In addition, we
also search for SHA-1/256 hashes of the SubjectPublicKeyInfo (SPKI)
field of certificates that is traditionally used in various protocols
(e.g., HTTP Public Key Pinning [33] andDANE [32]), but also seen in
some pinning implementations (e.g., Chrome [35] and the Android
OkHttp library [3]).

We decompile the Android apps using Apktool [2]. As iOS apps
are encrypted, we use Flexdecrypt [7] or Frida-iOS-Dump [9] to
extract decrypted payloads. Flexdecrypt is faster than Frida-iOS-
Dump because it does not require opening an app for decryption.
We then employ a fast recursive grep tool, ripgrep [14], to search for
the regex patterns of interest, i.e., hashes or certificates. For hashes
we use the regular expression sha(1|256)/[a-zA-Z0-9+/=]{28,64}. The
length allows us to search for hashes that are either base64- or hex-
encoded. In addition, we use libradare2 [13] to analyze strings from
native libraries and/or executables present in the apps. We note that
we do not attempt to de-obfuscate any decompiled files, nor can we
handle any code that an app dynamically downloads during run
time, which is a limitation common for any static analysis approach.

4.1.3 Associated Certificates. We search for certificates associated
with SubjectPublicKeyInfo hashes that our analysis found in the
apps using the crt.sh certificate search [5] that indexes data from
Certificate Transparency (CT) logs.

4.1.4 Third-party Pinning Code. Because we have information
about the path in the app code where each pin or certificate is
found, we can use this information to shed light on the source of
pinning code. To check for third-party pinning, we manually review
all the certificate paths that appear in more than 5 apps, and infer
whether the source is indeed a third party using publicly available
knowledge (e.g., code in the sensibill folder reflects the billing API
of the Sensibill SDK in Android apps).

4.2 Dynamic Analysis
There are several reasons why support for pinning found statically
in apps might not lead to pinning being used at run time. For
example, we may detect code that is unused (e.g., due to a library
that is never loaded, a library that provides optional support for
pinning, or an outdated app version dynamically disabling pinning
at run time). To address this, we use dynamic analysis; namely, we
install and run apps on devices while collecting device logs and
network traffic to determine if apps pin certificates at run time.
Thus, we consider results from dynamic analysis to be the ground
truth about whether apps actually use pinning or not. In this section,
we describe the components used in our dynamic analysis in detail
and how they tie together to detect pinning.

4.2.1 Dynamic Pipeline. We execute apps on real devices and col-
lect network traffic. Our dynamic pipeline relies on automation
frameworks for both platforms that control the devices via USB con-
nections, and can install/run/uninstall apps on them. Our devices
connect to aWiFi hotspot under our control.We usemitmproxy [12]
to proxy all the traffic from devices to servers, and to have the ability
to MITM the traffic using an arbitrary CA certificate.
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Figure 1: Ourmethodology to detect certificate pinning.We (1) crawl Android and iOS apps, (2) search app contents for certificate
files or hashes, (3) retrieve certificates corresponding to the hashes using publicly available Certificate Transparency logs, (4)
launch every app on a real device and collect network traffic in two distinct settings: (5) when app traffic is not intercepted, and
(6) when app traffic is intercepted through monkey-in-the-middle (MITM) technique. We identify and mark TLS connections
that transmit data in the former setting but not the latter as pinned.

For the Android tests, we use a Pixel 3 device running a factory
system image of Android 11 (released in September 2020; modified
to include the mitmproxy certificate in the certificate store). For the
iOS tests, we use an iPhone X running iOS 13.6 (released in July
2020; with trust for the mitmproxy certificate enabled). Our iPhone
is jailbroken using Checkra1n [4] to facilitate various aspects of
the study (e.g., app decryption for static analysis, pinning circum-
vention). Our choice to use the particular iPhone model and OS
is based on the fact that there were no jailbreaks available for the
latest combinations at the time of our experiments.

During dynamic testing, the automation framework installs one
app at a time on the test device to ensure traffic isolation, waits 30
seconds to collect app traffic, and uninstalls the app before moving
on to the next. For each dataset of apps, we run two experiments.
Our first baseline experiment (“non-MITM" ) records TLS traffic
triggered by apps without any interference. The second experiment
(“MITM”) runs with mitmproxy enabled, which tries to MITM any
TLS connection. Based on the difference in app behavior in these
two experiments, we extract information about pinned connections,
as described in detail in the next section.
App Interaction: We experimented with various techniques to
automate interacting with apps using UI Automator [16] for An-
droid and a similar tool for iOS. While automation is itself feasible,
the key issue is that apps on iOS and Android often present dif-
ferent UIs and we could not identify a general way to exercise the
same functionality across platforms and thus could not conduct
an apples-to-apples comparison. Given this, we also explored the
potential for using random interactions that are commonly used in
prior work (e.g., [46], [44]). While the interactions would not be
identical across platforms, they also should not have any particular
bias overall. We conducted a small set of experiments where we
used automated, random UI interactions, and we found no signifi-
cant change in the number of domains contacted when compared
to tests without any UI interactions. Thus, we do not perform any
automated or manual interactions with apps in our study.

We varied the amount of sleep time (15 s, 30 s, and 60 s) from in-
stalling an app to uninstalling it, and heuristically found 30 seconds
to be the best value for our study. More specifically, we found the
average number of TLS handshakes performed by a small random
sample of apps in the three settings to be 20.78, 23.5, and 24.62 re-
spectively. As the vast majority of TLS connections are established
within 30 seconds, we believe the diminishing returns beyond this
point are not worth the additional wait.

4.2.2 Detecting Pinned Connections. A key challenge for detecting
pinned connections is that it can be difficult to distinguish between
a connection that fails due to TLS interception on a pinned connec-
tion, as opposed to a connection that fails for other reasons (e.g.,
server-side issues). At a high level, our approach is to use a differ-
ential analysis, where we detect differences in connection behavior
with and without TLS interception. Specifically, if a connection
to a destination carries traffic beyond the handshake without TLS
interception, and never carries traffic when with TLS interception,
we mark the destination as pinned.

More specifically, we observed that a pinned TLS connection
exhibits two key properties, and neither is unique to TLS intercep-
tion. First, pinned TLS connections typically send failure signals
via a TLS alert or TCP connection reset if an attempt is made to
MITM them. However, these signals may also appear in an app
traffic for reasons other than pinning (e.g., TLS alert due to an
unsupported protocol version). Second, pinning may result in a
connection being successfully established, but it will never be used
for transmitting useful application data if there is an attempt to
MITM the connection. However, even without TLS interception,
apps will create redundant connections and never use some of them
to transmit application data. Thus, we need a way to account for
such confounding factors. By comparing connection behavior in
the two settings, we can attribute any observed connection fail-
ures to the presence of pinning. We further rely on the following
definitions to evaluate a connection status:
Used Connection: To determine whether a TLS connection sends
application data, we rely on the following tests. For TLS 1.2 or
below, the presence of any “Encrypted Application Data” pack-
ets is sufficient to infer that the corresponding TLS connection is
being used by a client. This inference does not work for TLS 1.3,
where all encrypted records (data, alerts, or handshake messages)
are disguised as TLS 1.2 “Encrypted Application Data” to reduce
issues with middleboxes. Thus for TLS 1.3, we rely on the follow-
ing two heuristics to identify connections that send application
data: 1) clients either send more than two “Encrypted Application
Data” packets, or 2) the second packet is not the same length as an
encrypted TLS alert. The reasoning behind this is that the first en-
crypted client packet must always be “Client Handshake Finished”
for successful connections according to the protocol specification,
the second packet may or may not be an alert to indicate connection
closure and third (if present) can only mean that application data
has already been transmitted.
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Failed Connection:We define a failed connection as any TLS con-
nection that goes unused, and where the clients abort connections
with TCP RST or TCP FIN flags. This helps avoid false positives for
cases where a connection simply remained unused in our experi-
ments due to the limited recording time.

After collecting that status of connections, we evaluate which
destinations are used at least once. Such information is readily avail-
able: 99% of the TLS traffic in our experiments have a non-empty
SNI field, indicating the destination hostname for the connection. If
a destination has any TLS connection that is used in the non-MITM
setting, but TLS connections that always failed in the MITM set-
ting, we mark it as pinned. We note that the heuristic to mark used
connections does not need to be perfect, as we ultimately rely on
whether an app behaves differently in the two experiment settings
to determine pinning status.

4.3 Circumventing Pinning
Using the aforementioned methodology, we detect apps that imple-
ment pinning. In order to understand why apps implement pinning
(RQ5), we attempt to look at the traffic sent in those pinned connec-
tions. To this end, we use Frida [8] to hook into various popular TLS
libraries and disable certificate validation checks. When successful,
this allows us to continue using our dynamic pipeline to MITM
connections and obtain data that apps send to servers in pinned
connections. We note that pinning circumvention is not guaranteed
to succeed, as developers can always use custom TLS implementa-
tions rather than relying on popular ones. Using this approach, we
were able to successfully circumvent pinning for ≈51.51% unique
destinations on Android, and ≈66.15% unique destinations on iOS.

4.4 PII Analysis
Pinning can either be used to protect sensitive user data, or hide
data collection from auditors. As we do not interact with the apps,
we cannot check if pinned connections are being used to protect
user data (e.g., banking credentials). However, we can still check
for the presence of other sensitive information that apps are known
to collect from prior studies [34, 43, 45, 46].

More specifically, if we are successful in circumventing pinning,
we inspect the decrypted application data to check for the pres-
ence of sensitive personally identifiable information (PII) that can
harm user privacy. We also check whether PII presence differs sig-
nificantly in the pinned vs non-pinned traffic. The PII we search
for includes the following information for both platforms: IMEI,
advertisement ID, WiFi mac address, user email, state, city and lati-
tude/longitude. Although this list is not exhaustive by any means,
it is sufficient for the purposes of this study as we are mainly in-
terested in comparing PII prevalence across pinned vs non-pinned
traffic, rather than finding out whether apps transmit any PII.

4.5 iOS Background Traffic
For Android, our manual analysis did not detect any background
traffic that could interfere with our experiments. However, the situa-
tion for iOS turned out to be difficult to handle. First, we noticed TLS
traffic to various Apple-controlled domains (icloud.com, apple.com
and mzstatic.com) that spanned the whole duration of dynamic

testing (mainly due to connection retries in MITM experiments).
We simply excluded these destinations from our analysis.

Second, and more importantly, we also needed to ignore traffic
to many first-party destinations for apps, because it might have
been triggered by the OS, rather than the app. This is due to a
feature in iOS that contacts all destinations that are marked as
“associated” in an app’s entitlements. When an app is installed,
iOS triggers TLS communication with these destinations to verify
that they are indeed controlled by the app’s developer (by going
to a specific pre-defined path). The purpose of this feature is to
facilitate connections between the app and its website(s) (e.g., to
share credentials, to navigate from the browser to the app when the
user visits one of its websites). In our testing, we noticed that all this
traffic appears as pinned, likely because the underlying iOS service
does not trust our MITM certificate. Unfortunately, the traffic from
OS exhibits a similar TLS fingerprint as regular app traffic. As such,
we could not find a way to distinguish traffic to these destinations
triggered by the app vs the iOS background service. To avoid falsely
attributing pinning to apps, we ignored all associated destinations
from an app’s entitlements during our analysis. More specifically,
66% of apps did not specify any associated domain, so no traffic was
excluded for these. For the rest, there were on average 4.8 unique
associated domains present in the configuration. Note that this
generic approach of excluding traffic can only cause false negatives
(i.e., filter out domains that actually pin), not false positives.

Since our goal is to conduct a head-to-head comparison of pin-
ning prevalence in Android vs iOS, we re-ran our dynamic pinning
detection pipeline for apps in the Common dataset that were found
to be pinning in either Android or iOS through the prior method-
ology (72 apps in total). We modified our setup for the re-run in
the following way in order to avoid the issue with associated des-
tinations: after installing an app, we waited 2 minutes to let the
OS finish communicating with these first-party destinations. We
launched the app afterwards, and then collected data for 30 seconds
as we had done before. We use results from this re-run whenever we
mention iOS Common dataset in the rest of this paper. On a positive
note, the limited re-run did not reveal any false negatives in the
initial run. Thus, we do not believe our methodology of handling
iOS background traffic affects the results significantly.

5 RESULTS
We apply the techniques presented in Section 4 on each dataset we
have collected in order to understand the prevalence of certificate
pinning. We present the certificate pinning we find, per dataset and
platform, for our static and dynamic analyses in Table 3. To help
us compare our findings with prior studies, Table 2 summarizes
pinning prevalence indicated in prior work. It is clear, however, that
these prior studies entail a wide range of techniques for detecting
pinning, use different app datasets, and were conducted over a wide
time range. Thus, it is difficult to conduct a meaningful apples-
to-apples comparison. Instead, to enable comparison with prior
work, we focus on the NSC-based static analysis technique used by
multiple prior studies, using the datasets we collect.
Pinning by Technique: Prior research mainly relies on Network
Security Configurations (NSCs) to detect pinning in Android [26,
41]. For our Android datasets, using the same approach, we find
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Study Year Prevalence Analysis Dataset size Dataset source
Fahl et al. [26] 2012 10% Dynamic 20 High-profile Android apps

Oltrogge et al. [37] 2015 0.07% Static 639,283 Apps from the Google Play store
Razaghpanah et al. [42] 2017 2% Dynamic 7,258 Android apps found in the wild

Stone et al. [48] 2017 28% Dynamic 135 Security sensitive Android apps
Possemato et al. [41] 2020 0.62% Static 16,332 Android apps using NSCs
Oltrogge et al. [38] 2021 0.67% Static 99,212 Android apps using NSCs

Table 2: Certificate pinning prevalence mentioned in prior work. Note that the variety of analysis techniques, datasets, and
passage of time make direct comparisons difficult.

Dataset type Dynamic analysis Static analysis
Embedded Certificates Configuration Files*

Common (n = 575) Android 8.17% (47) 26.96% (155) 2.78% (16)
iOS 8.52% (49) 22.96% (132) -

Popular (n = 1,000) Android 6.7% (67) 19.7% (197) 1.8% (18)
iOS 11.4% (114) 33.4% (334) -

Random (n = 1,000) Android 0.9% (9) 9.9% (99) 0.6% (6)
iOS 2.5% (25) 9.5% (95) -

Table 3: Certificate pinning prevalence found using various methods across different datasets. Each cell denotes the number of
apps with one instance of pinning, over the total number of apps in that dataset. (*) denotes the method used by prior work.

relatively few apps to pin (from 0.6% to 2.78% depending on the
dataset). In contrast, our dynamic analysis technique finds up to 4
times more pinning (i.e., 1.8% to 6.7% in popular apps). Our findings
suggest that apps likely have many options other than NSCs to
deploy pinning.

We further find that pinning prevalence varies substantially
for the novel static and dynamic approaches we develop. While
static approaches provide us with potentially pinning apps, dynamic
analysis gives us stronger evidence of pinning as we observe pinned
behavior through network connections. Due to this reason, for the
remainder of this paper, we call an app to be pinning if we find
at least one instance of a pinned connection from the app in our
dynamic analysis results.
Pinning by Platform: We find more pinning apps in iOS as com-
pared to Android across all datasets. While we present a head-
to-head comparison of apps in the next section, we find it inter-
esting that even random iOS apps pin substantially more (2.5%)
than the set of random Android apps (0.9%). Upon closer inspec-
tion, we notice that two destinations, www.paypalobjects.com and
firestore.googleapis.com, get pinned in 10 and 5 apps respec-
tively in the iOS random dataset. In comparison, for the Android
random dataset, we do not find any common pinned destination.
As such, increased pinning in iOS might be due to these and other
third-party libraries that are pervasive in the iOS ecosystem, and
choose to pin, as compared to the ones for Android.
Pinning by Category: To understand the characteristics of apps
that use pinning (RQ2), we check whether apps belonging to certain
categories pin more frequently than others. For each category from
the two platforms, we normalize the number of apps that pin by
the number of apps we have in that category. We present the top
10 app categories that pin in Android (Table 4) and iOS (Table 5).

We find that the top category in both platforms is “Finance,”
suggesting the use of pinning is to protect sensitive user data in
these apps. The next two categories are “Social” and “Shopping,”
likely again due to the sensitivity of data shared on apps in these

Category (Rank) Pinning % No. of Apps
Finance (9) 22.99 % 20
Social (14) 17.81 % 13
Events (28) 15.0 % 3
Dating (33) 14.29 % 2

Food & Drink (15) 13.64 % 9
Shopping (18) 12.96 % 7
Comics (32) 12.5 % 2

Automobile (25) 8.33 % 2
Travel (12) 6.49 % 5
Weather (24) 5.88 % 2

Table 4: Top 10 categories of apps that pin in Android across
all datasets and pinning prevalence per category. Ranks indi-
cate the popularity of a category in our dataset.

Category (Rank) Pinning % No. of Apps
Finance (9) 20.63 % 26

Shopping (13) 16.48 % 15
Travel (14) 13.48 % 12

Social Networking (8) 11.02 % 14
Photo & Video (6) 10.67 % 16

Lifestyle (5) 8.7 % 14
Food & Drink (11) 8.49 % 9

Sports (16) 8.16 % 4
Navigation (22) 8.0 % 2

Books (19) 7.69 % 3
Table 5: Top 10 categories of apps that pin in iOS across all
datasets and pinning prevalence per category. Ranks indicate
the popularity of a category in our dataset.

categories. In terms of categories within a platform, we find it
interesting that none of the top 3 app categories for either plat-
form appears in the respective top 10 pinned categories list. In fact,
“Games” is the most prevalent category across all our datasets, but
does not appear in the top 10 pinned categories for either platforms.
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Figure 2: Pinning found in the Common dataset split by plat-
forms. We classify pinning found in this dataset into: Incon-
sistent, Consistent, and Inconclusive as defined in Section 5.1.

5.1 Pinning in Common Apps
To understand whether pinning apps pin the same domains on
both Android and iOS (RQ3), we consider apps from our Common
dataset. From this dataset, we find 69 apps that pin on at least one
platform. Of these, 27 apps pin on both Android and iOS, 20 apps
pin solely on Android, and 22 apps pin solely on iOS. For each
app, we compare the set of pinned and unpinned domains across
platforms.

By definition, a single entity controls both Android and iOS
versions of the same app in the common dataset, and one might
hypothesize that they pin domains in the same way. However, we
find in practice that they do not always do so, and thus define
inconsistent and consistent pinning for this common dataset as
follows. An app has inconsistent pinning if a domain pinned on one
platform is not pinned on the other. An app has consistent pinning
if it pins at least one common domain on both platforms and has
no inconsistent pinning. Based on these definitions, we present
Figure 2. For a set of apps, we have inconclusive results, as domains
pinned on one platform do not appear on the other at all. For these,
we can not determine if the domains would be pinned or not, as we
have not observed them.
Apps Pinning on Both Platforms: Of the 27 apps that pin on
both platforms, we find that 15 apps have consistent pinning. For
these apps, we aim to understand the number of common domains
pinned on both platforms. To this end, we compare pinned domains
on Android to pinned domains on iOS for each app. We find that 13
apps have the same set of domains pinned on both platforms. For
the remaining two apps, we see that one domain is pinned on both
platforms (Android pins one other and iOS pins two others).

To understand the inconsistent pinning apps, we compare pinned
domain sets to not pinned domain sets. To compare similarities
in pinned domains for two pinning sets, we use Jaccard indices.
To compare a pinning set to a non-pinning set, we look at the
percentage of pinning domains present in the non-pinning set. We
use this instead of Jaccard indices here as we care about domains
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Figure 3: Inconsistent pinning in apps that pin on both plat-
forms.We see that the first two apps have overlapping pinned
domains but are inconsistent as they pin domains on one
platform and not on the other.
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Figure 4: Inconsistent pinning in apps that pin exclusively on
one platform. Each cell represents the percentage of pinned
domains on a platform found as not pinned on the other. For
6 Android and 7 iOS apps, all pinned domains appear as not
pinned on iOS and Android respectively.

that are pinned in one set and not pinned in the other, as opposed
to similarities between the two sets. We present a heatmap of these
calculations in Figure 3. Each inconsistent app is represented as a
row with the first column giving us the overlap of pinned domains
on both platforms. The second gives us the percentage of pinned
domains on Android that appear as unpinned on iOS; the third gives
the percentage of pinned domains on iOS that appear as unpinned
on Android. Of the 6 apps, we see that 2 have overlaps of pinned
domains; 3 have pinned domains on android that they do not pin on
iOS and 3 pin domains on iOS that they do not pin on Android. For
the remaining 6 apps, all values on such a heatmap would be 0. On
analyzing these, we see that they share no common domains on the
two platforms; thus all overlaps would be 0 and hence inconclusive.
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Apps Pinning on One Platform: To understand how domains
pinned on one platform are handled on another platform, we look
at apps that pin exclusively on one platform. For this set, pinning
consistencies are nonexistent as the other platform does not pin.
To understand these pinning inconsistencies, we compare pinned
domains on one platform that appear as not pinned on the other.
Apps that have pinned domains on one platform that do not appear
as unpinned on the other are marked inconclusive. For 20 apps
pinning exclusively on Android, we have 10 inconsistent and 10
inconclusive apps. For 22 apps pinning exclusively on iOS, we have
7 inconsistent and 15 inconclusive apps.

We calculate the percentage of pinned domains that appear as
not pinned on the other platform and plot a heatmap of these in
Figure 4. We see that 7 Android apps have all traffic pinned on
Android appearing as not pinned on iOS. All apps on iOS marked as
inconsistent (7) have all pinned domains appearing as not pinned on
Android. Thus, for both these sets of apps, we see that developers
talk to common domains and pin them on one platform while not
pinning them on the other. This indicates that the pinning policies
of these apps is inconsistent and vary greatly based on the platform.

5.2 Pinning in Popular vs Random Apps
To understand the prevalence of pinning in popular and arbitrary
apps (RQ2), we apply our detection methodology on the Popular
1,000 and Random 1,000 datasets. For Android, we find that 67 apps
from Popular and 9 apps from Random use pinning. For iOS, we
find 114 apps from Popular and 25 apps from Random use pinning.
Thus, we see that pinning is more prevalent on iOS as compared to
Android.

To further understand the nature of pinning, specifically the
parties involved in pinning in an app, we dig deeper into the number
of pinned connections and present the results in Figure 5. Each
bar on the x-axis represents an app that pins at least one domain,
split by dataset and platform. The y-axis shows the percentage
of pinned and not pinned domains that each app contacts in our
tests. Blue represents pinned domains and green represents not
pinned domains. We divide domains contacted by an app into first
and third party, attributing each domain for an app using various
points of information (whois data, certificate subject names, etc.).
We annotate each bar with first and third party data marking first
parties with dark and third parties with light colors.

We see that almost all Android apps that contact first party
domains also pin those domains (28); with a single exception, Trulia.
On the other hand, Android apps that pin third parties (51) rarely
pin all third parties (4); many apps pin some third parties and do
not pin others (47).

In contrast, for iOS we observe many cases where first parties
are not pinned (18), often when other first parties are pinned (6,
dark blue and dark green on the same bar). Similar to Android,
many iOS apps pin all first party domains they contact (39). All iOS
apps in our dataset that pin third party connections also have other
unpinned flows (99).

Based on the results in Figure 5, we observe that apps on both
platforms almost always have inconsistent pinning practices; do-
mains (regardless of first or third party) are selectively pinned,
disregarding other traffic. Only 5 apps on Android (AskURA, Auto

Platform Default PKI Custom PKI Data Unavailable
Android 163 4 11
iOS 238 1 14

Table 6: Type of Public Key Infrastructure (PKI) used by
pinned destinations. The majority of pinning happens with
certificates that tie to the default PKI.

Kiosk, Edmtrain, FFBaD, and Private Fostering Awareness) and 4
apps on iOS (Bank of America, CandyCrush, Facebook, and Surge
proxy) pin all domains they contact.

5.3 Certificate Analysis
In this section, we explore how certificate pinning is implemented
in apps from the two platforms (RQ4). To do this analysis, we
gather certificate chains that are served at destinations found to
be pinning via dynamic analysis, as well as the certificates found
in apps using static analysis. Our static analysis techniques (1)
search for raw certificates present in an app, and (2) attempt to
fetch certificates associated with any SPKI hashes present in the
app. More specifically, our static analysis techniques discovered
966 unique certificates across all apps present in raw format, as
well as 170 unique certificates associated with 50% of the unique
pins from all apps. Using this static and dynamic certificate data,
we shed light on the following aspects of pinning implementations:

5.3.1 The Public Key Infrastructure (PKI) Used. Both Android and
iOS come pre-bundled with a default set of root CA certificates (the
“default PKI”). We note that in the case of Android, Original Equip-
ment Manufacturers (OEMs) may add additional root certificates
in addition to those included in Android’s Open Source Project
(AOSP) [27, 50]. Apps that wish to implement pinning can either
pin certificates that still tie to the default PKI, or use a “custom PKI”
altogether by trusting their own root CA. To understand which of
these two mechanisms are prevalent in apps, we validate certificate
chains served at all pinned destinations using OpenSSL, configured
with the latest version of Mozilla CA certificate store [6]. Further,
wemanually review the ones OpenSSL could not validate to confirm
that they are indeed certificates tied to custom PKIs. Our results,
summarized in Table 6, reveal that the vast majority of pinning
happens with default PKI in use.

Interestingly, we also find two cases, one per platform, where the
destination presents a self-signed certificate, rather than a chain.
Although these destinations are reaping the benefits of certificate
pinning, they are likely missing the flexibility provided by a PKI.
To illustrate this, we note that the expiry dates for these certificates
are 27 and 10 years. Due to this long validity period, and because
these certificates cannot be revoked (revocation only applies to
leaf certificates), any key compromise will mandate app updates to
protect connection security.

5.3.2 Pinning Root vs Leaf Certificate. Apps can choose to either
pin the root or a leaf certificate from the certificate chain, with
the former offering more flexibility while the latter offering more
security. More specifically, pinning a leaf certificate protects the
TLS connection from all CAs, including the issuer. But on the other
hand, leaf certificates have shorter expiry periods, and their keys
are more likely to be rotated for security reasons. As such, pinning
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(a) Android Pinning

(b) iOS Pinning
Figure 5: Percentage of domains contacted that are pinned vs not pinned. Dark colors represent first parties and light colors
represent third parties. Each bar represents an app, from the Popular and Random datasets for Android and iOS respectively.

leaf certificates demands more management, and can even render
apps unusable if they are not updated to reflect the latest leaf served
from a destination.

To understand which type of certificates apps choose to pin,
we cannot only rely on dynamic data alone as this data reveals
certificate chains presented at pinned destinations. Rather, we need
to investigate which certificate in the chain is likely pinned in an
app’s code using static analysis methods (see Section 4.1.2). In our
analysis, we find ≈31% of pinning apps across the two platforms, for
which there is at least one certificate that appears in both static and
dynamic data (certificate matching is done in terms of the Common
Name). We find the majority of these certificates to be CAs (80/110),
and the remaining (30/110) to be leaf certificates.

5.3.3 Pinning Entire Certificate vs Its Key. As mentioned earlier,
pinning leaf certificates can lead to unavailability issues if the cer-
tificates are updated at the server but an outdated app version is
used, or if the developers forget to update pinned data on the app.
There is one exception since pinning can be done via a certificate’s
Subject Public Key Information (SPKI): app developers can update
certificates on the servers as long as the certificate key remains un-
changed. Our data indicates that this is indeed how app developers
implement pinning. More specifically, out of the 30 leaf certificates

that we found to be pinned in the previous section, 24 of them
were pinned via SPKI hashes. The remaining 6 leaf certificates are
present in their raw format in the apps, thus the developer could
either pin the whole certificate or just the public key. In 5 of these
6 cases, we notice that destinations serve new leaf certificates dur-
ing dynamic testing, which still result in pinned connections. This
suggests that app developers likely pinned public keys for these
certificates. Although this is good news for app usability, it also
implies that certificate keys are reused which, in-turn, defeats the
purpose of certificate renewals.

5.3.4 Subverting Proper Certificate Validation. Because certificate
pinning only protects TLS connections against particular attacks,
any pinning implementation still needs to conduct other certificate
validation checks as defined in the TLS protocol (e.g., certificate
subject name match, date validation) to protect against other at-
tacks [48]. To see if any apps that use pinning bypass other standard
certificate validation checks, we check for expiry dates of certifi-
cates served at pinned destinations. We do not find any certificates
that are expired but were considered valid by apps during dynamic
analysis. As such, we do not find any evidence of apps subvert-
ing normal certificate validation to only rely on pinning as the
protection mechanism.
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Platform Framework # apps

Android

Twitter 29
Braintree 27
Paypal 25

Perimeterx 9
MParticle 9

iOS

Amplitude 45
Stripe 34
Weibo 24

FraudForce 16
Adobe Creative Cloud 13

Table 7: Top 5 third-party frameworks that include certificate
in Android and iOS. We combine paths where certificates are
found across apps and provide occurrences here.

5.3.5 Third-party Frameworks That Introduce Certificates. We fi-
nally look at the package code paths in apps where our static anal-
ysis detects certificates and/or pins to attribute the behavior to
first-party or third-party code. We observe that many of these paths
appear in multiple apps. Upon manually investigating for the top
common paths with certificates, and removing generic ones (such as
config.json), we present the list of various third-party frameworks
that we identify to likely be introducing certificate pinning logic
to the apps in Table 7. For some of these, we are able to trace the
pinning code in their open-source repositories (e.g., Twitter SDK,
MParticle SDK). We note that some of these frameworks are also
associated with popular pinned domains from our dynamic analy-
sis (e.g., config2.mparticle.com, *.perimeterx.net). Last, we
believe that the end-points that did not appear during our dynamic
analysis are likely the ones for which we were unable to automati-
cally trigger the associated code paths. We particularly believe this
to be the case with Paypal that appears as a popular pinned domain
in iOS, but never appears in Android (except for the Paypal app).
Overall, our analysis reveals social networks, payment processing
systems, and app analytics frameworks are the common sources of
third-party code that introduces certificate pinning in apps.

5.4 Connection Security
In this section, we explore whether apps that use pinning also
adopt other security practices in their pinned TLS connections
(RQ5). More specifically, we check whether these TLS connections
advertise support for bad ciphersuites (e.g., DES, 3DES, RC4 or EX-
PORT) that are susceptible to attacks. We compare their prevalence
with connections from all apps to contrast security practices of
apps that implement pinning. Table 8 shows our results. “Overall”
shows the percent of all apps in a dataset that have at least one TLS
connection with bad ciphers, while “Pinning apps” shows the per-
cent of apps with certificate pinning that have at least one pinned
TLS connection with bad ciphers.

Across all three iOS datasets, we see an increase in connection
security of pinning connections when compared to the overall con-
nections in every set. Weak ciphers drop from 93.39% to 55.77% for
Common iOS, 95.2% to 46.09% for Popular iOS, and 82.6% to 52.94%
for Random iOS datasets. However, trends in Android are more
nuanced. For the Common Android dataset, we see that pinning
apps reduce connection security as the percentage of bad ciphers

Dataset Bad Ciphers
Overall Pinning apps

Common Android 8.35% 23.4%
iOS 93.39% 55.77%

Popular Android 18.3% 1.49%
iOS 95.2% 46.09%

Random Android 3.1% 0.0%
iOS 82.6% 52.94%

Table 8: Weak ciphers found in pinned vs all connections
across all datasets for Android and iOS. In general, we see
pinning apps increase connection security in pinned con-
nections as they disable weak ciphers more often than other
apps in the dataset. The Common Android dataset (italics)
is an exception to this trend supporting weak ciphers more
often than the rest of the dataset.

Platform PII Pinned Non-Pinned

iOS

Ad. ID* 25.85 % 18.06 %
City 0 % 0.94 %
State 0 % 0.31 %

Lat./Lon. 0 % 0.04 %

Android

Ad. ID 25.74 % 19.96 %
Email 0.99 % 0.52 %
State 0.99 % 1.12 %
City 0 % 0.45 %

Table 9: PII found in pinned connections, and how the preva-
lence differs from non-pinned TLS connections. (*) marks
results that are statistically significant.

in pinning apps is higher (23.4%) than that of the overall dataset
(8.35%). But for the Popular and Random Android datasets, we see
an increase in connection security of pinning connections as com-
pared to other apps in those sets. Weak ciphers drop from 18.3% to
1.49% for the Popular set and from 3.1% to 0.0% for the Random set.
Thus, with the exception of the Common Android dataset, our data
suggests that pinning apps likely have better connection security
for their pinned connections when compared to non-pinning apps
on both Android and iOS.

5.5 PII in Pinned vs Non-Pinned Traffic
Since pinned TLS connections are harder to inspect by device users
and auditors, in this section we try to understand whether app
developers implement pinning in order to hide sensitive PII data
collection, rather than to improve user security (RQ5). To do so, we
inspect PII prevalence in decrypted TLS connections for all apps
that implement pinning using the methodology described in 4.4.

Our results are presented in Table 9 and reveal what PII is found
in pinned traffic, and how does the prevalence differs for non-pinned
traffic. Since the number of non-pinned destinations is orders of
magnitude more than pinned ones on both platforms, we cannot
simply compare the PII prevalence across the two categories. As
such, we highlight the results where differences in PII prevalence
are statistically significant (found using Chi-square test of inde-
pendence with a p-value < 0.05). We find that advertisement ID
is the key identifier that appears substantially in both pinned and
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non-pinned traffic. Although it appears more in pinned traffic, the
differences we see are statistically significant in only one platform.
We do not find substantial presence of other identifiers that we
checked for. As such, our results suggest that app developers likely
do not use pinning as a method to hide PII data collection.

5.6 Limitations
We discuss limitations of our methodology here. We also claim to
find a lower bound of certificate pinning, which remains unaffected
by these limitations.
Embedded Certificates:We search for certificates embedded in
apps, but could miss certificate for various reasons, such as apps us-
ing obfuscated code, reconstructing certificates at run time, storing
certificates in non-standard formats, etc.
Partial Observation: Our dynamic testing is limited; we do not
explore all code paths of an app. Thus, we miss certificate pinning
that is not triggered during our testing. Similarly, we do not have
ground-truth about all of the PII that apps collect. Our analysis
instead is limited a subset of PII that we could infer automatically
in network traffic.
iOS Background Traffic: As discussed in Section 4.5, we exclude
iOS “associated" domains from our pinning calculations to avoid
introducing noise due to OS-initiated background traffic. This may
lead to an underestimation of pinning on iOS.
Limited App Interaction: Though we explored automated inter-
actions with apps, we found they had a limited impact on results.
We did not log into or interact with apps after doing so. Thus, we
potentially miss pinned connections in such scenarios.
Dataset: Given that the dataset is collected from official stores, we
do not capture the prevalence of pinning outside of official channels.
Similarly, we do not cover prevalence for paid apps. Lastly, we
tested a relatively modest number of apps (≈3,000), largely due
to scalability constraints for dynamic testing. While we partially
mitigate this by selecting different collections of apps (Popular,
Random), our study represents only a sample of all available apps.

5.7 Discussion and Future Work
Pinning Inconsistencies:We introduce the concept of inconsis-
tent and consistent pinning for the Common dataset of apps. Apps
from the Common dataset are developed and maintained by the
same entity (developer, company, etc.). Thus, we expect the pinning
policies to be consistent across these two mobile platforms. We
find that this is rarely the case, with less than half the apps hav-
ing completely consistent pinning. This indicates that the security
practices of the same entity are different on Android and iOS, and
is an interesting finding as it is unexpected.

We argue that pinning consistently, across platforms, is good
practice. Although codebases for various platforms might vary, the
reasoning behind pinning should be the same. We can only specu-
late about the reasons for such differences, e.g., they could be due to
different pinning APIs across OSes causing confusion/inconsistency
(e.g., as found by Oltrogge et al. [37]), or due to developers using
different threat models for iOS compared to Android.
Developer Survey: Our work revealed practices that cannot be
explained by our dataset alone. By surveying developers who use
pinning, we can better understand the reasoning behind pinning,

including why there are inconsistencies between Android and iOS.
Such a survey can also help the community to better understand
deployment/maintenance requirements, and compile a better set of
guidelines for developers that wish to use certificate pinning.
App Exploration: An orthogonal problem we encountered dur-
ing our study was app exploration. We tested random automated
interactions with apps but found no significant change in traffic
generated by the apps with or without these interactions. Devel-
oping a tool that automatically interacts with apps (signing up,
logging in etc.) would be useful for various future studies.
Pinning Circumvention: In this paper we used existing tech-
niques to circumvent pinning to study data that is protected behind
pinned connections. The number of connections we circumvented
was limited (≈50% destinations). We leave it to future work to de-
velop techniques that can circumvent a larger number of pinned
connections, enabling studies of data protected by pinning.

6 CONCLUSION
This paper conducted the first large-scale study of certificate pin-
ning across both Android and iOS apps. We found significantly
higher prevalence of pinning than in prior studies, with at least 11%
of popular iOS apps and 6.7% of popular Android apps doing so.
Interestingly, we found that pinning behavior varies significantly
across platforms, even for the same app. Based on our analysis,
pinning is commonly added by third-party libraries and is likely
deployed for the protection of financial data, with little evidence
that pinning is used primarily to protect (non-credential) personal
data. In future work, we will explore how results change with more
app interactions, both automated and manual.

7 ETHICS
This paper does not entail human subject research. All tests were
conducted using accounts set up for the sole purpose of our testing.
Our methodology requires crawling app stores, and we used low
crawling rates with accounts that are easily identified as being
used for research purposes (in case the platforms took notice of
our crawls and needed to contact us). Similarly, while crawling
the AlternativeTo website, we limited our crawler to request 1
page/second and included our contact details in the User-Agent
field. We received no complaints about our crawls, nor were any of
our accounts disabled or rate limited in any way.
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A IOS DATASET COLLECTION
The key challenge is that iOS apps are encrypted with keys hard-
coded in Apple devices, as well as the user key associated with an
app download. In addition, there are no public APIs that can be used
to fetch app contents. While Tang et al. [49] collected a large cor-
pus of iOS apps using various novel techniques, they unfortunately
did not open-source their download tool, and we were unable to
reproduce it due to lack of some key details. Correspondence with
the authors also did not reveal these important details.

Our approach was thus inspired by earlier work that automates
GUI interaction with (the now deprecated) iTunes 12.6 application
[40], and was also followed by concurrent work on PII leakage in
Android compared to iOS apps [34]. The process is semi-automated,
as we occasionally needed to manually fix various issues (i.e., re-
authenticate); the inability to download apps in a fully unattended
way is the main reason we restricted the scale of our analysis to
thousands of iOS apps. To be consistent, we chose the same number
of apps from Android.
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