
Communication-efficient Distributed Average Consensus Algorithm for
Packet-switched Networks

Muhammad Talha Paracha1 and Waheed Bajwa2

Abstract— Computation and communication efficient average
consensus algorithms are highly desirable for Internet of Things
applications. Previous work on average consensus algorithms
focuses more on their theoretical aspects (e.g convergence
guarantees) and less on their practical aspects (e.g commu-
nication cost, power consumption). In this paper, we analyze
an algorithm for distributed average consensus which is robust
to network adversities found in packet-switched networks, and
find a communication overhead in it. We propose a TCP-
based modification to the original UDP-based algorithm and
hypothesize it to be more efficient in terms of bytes sent and
received, contrary to the conventional wisdom associated with
TCP-based algorithms. We implement these two algorithms on
a test bed of Raspberry Pi computers connected wirelessly in
an ad hoc manner, and gather empirical results which support
our hypothesis. We believe the resulting algorithm is very
suitable for real-world usage and that our insights will help the
community build even better algorithms for distributed average
consensus in terms of communication cost.

I. INTRODUCTION

Consider a set of nodes connected to each other in an ad
hoc manner. Each node stores a value which, for example,
could be a sensor measurement. Imagine we want every node
to estimate the average of all values stored across the network
so, for example, to increase the accuracy in measurement.
This task, formally termed as ”average consensus” in the lit-
erature, is being studied for more than two decades. A vanilla
approach of connecting all nodes with a centralized location
might not be possible because of the lack of infrastructure
inherent in ad hoc networks. Other naive ways, such as nodes
flooding the whole network with their initial values, will not
scale well in terms of computation and communication cost.

Distributed average consensus algorithms, on the other
hand, provide a sophisticated approach in which each node
calculates the estimated average value by communicating
with its first-hop neighbors every once in a while. The
algorithms asymptotically converge to the exact average and
their convergence guarantees have been studied with various
network adversities such as packet loss, communication link
loss, node failure/recovery, channel noise, quantized data etc.

The importance of average consensus algorithms can be
realized by looking at the various applications in which
they are used such as distributed clock synchronization [1],
co-ordination of autonomous robots for flight [25], load
balancing [4], vehicle formation control [3] and sensor fusion

1M. T. Paracha is with the School of Electrical Engineering & Computer
Science, National University of Sciences & Technology, ISB, Pakistan
14besemparacha at seecs.edu.pk

2W. Bajwa is with the Faculty of Electrical and Computer Engineering,
Rutgers University, NJ, USA waheed.bajwa at rutgers.edu

[2]. Furthermore, these algorithms form building blocks
of many advanced algorithms for distributed optimization
such as Cloud-K SVD [5], distributed Maximum Likelihood
Estimation [7] and distributed Kalman Filtering [6]. The
distributed consensus algorithms in ad hoc networks are even
used to mathematically model how species like fireflies are
able to achieve global coordination via local interactions [8].

The motivation behind our work was to analyze the
practical aspects, like communication cost and power con-
sumption, of theoretically robust distributed average con-
sensus algorithms by implementing them on a test bed
of real-world Internet of Things (IoT) devices. This paper
has two contributions (1) We propose a distributed average
consensus algorithm which, despite being robust to all net-
work adversities found in packet-switched networks, is also
communication-efficient in terms of bytes sent and received.
(2) We generate useful insights on why algorithms using
lightweight connectionless UDP protocol are not always
communication-efficient as compared to their variants with
heavy connection-oriented TCP protocol.

This paper is structured as follows; In Section II, we
provide a review of various distributed average consensus
algorithms present in the literature, and conclude with the
one most suitable for packet-switched networks. In Section
III, we formally discuss the task of distributed average con-
sensus and analyze the aforementioned algorithm in detail.
In Section IV, we propose a TCP-based modification to that
algorithm and hypothesize it to be more communication effi-
cient as compared to its original UDP-based implementation.
In Section V, we evaluate the two algorithms on a test bed of
Raspberry Pi computers connected wirelessly in an ad hoc
manner and emulated with packet loss / delay. Finally in
Section VI, we conclude with a summary of our work and
the plans for future.

II. BACKGROUND

A. Types of algorithms

The various distributed average consensus algorithms
present in literature can be classified in many ways. Here
we discuss the classifications most suitable for digital packet-
switched wireless ad hoc networks:

1) Synchronous vs Asynchronous Iterations: Algorithms
with synchronous iterations assume that all nodes in the
network perform the consensus iterations in a synchronized
fashion. Due to this harmony, the node with slowest com-
munication in each iteration creates a bottleneck for the
whole network. As nodes in real-world wireless networks



can face arbitrary delays in communication, such algorithms
are undesirable.

2) Reliable vs Unreliable Communication: Algorithms
with reliable communication assume that a message sent by
a node to any of its neighbors is guaranteed to eventually
reach its destination. This assumption typically translates to
using a reliable communication protocol like TCP during
implementation. Since TCP is a connection-based protocol
with a bigger packet header as compared to a connection-
less protocol like UDP, such algorithms are conventionally
considered to be more computation and communication
heavy, and are thus undesirable (we later show in our work
that this is not always true).

3) Fixed vs Switching Topologies: Algorithms which
work on fixed topologies assume that a communication link
between any two neighbors in the network will never fail, and
hence the network topology would remain static during all
consensus iterations. As nodes frequently move in mobile ad
hoc networks commonly found in real-world scenarios, such
algorithms are undesirable.

B. Literature review

Xiao et al. studied various linear distributed average
consensus algorithms in a synchronized environment with
reliable communication and fixed network topology [9].
They provided different heuristics based on the Laplacian
of the associated undirected graph for fast convergence
of algorithms. We find that many future works use their
proposed algorithms as a base and modify it to handle
network adversities such as packet loss, packet delay and
communication link loss. In fact, Xiao et al. extended their
own work to handle switching network topologies using
Metropolis weights [10]. The resulting algorithm works as
long as the infinitely occurring communication graphs are
jointly connected, which is a reasonable assumption as the
estimated average value is required to be the exact value of
all nodes in the network.

Chin et al. extended Xiao et al.’s work to deal with severe
packet losses due to unreliable communication [11]. Apart
from the standard iterations performed in the base algorithm,
their algorithm also performs ”corrective” iterations on reg-
ular intervals, so to eliminate the errors in estimated average
values accumulated on any node due to packet losses. They
prove the error-free convergence of their algorithm, and use
simulations to show the behavior of their algorithm when
corrective iterations are performed less-vs-more frequently.
They initially assumed constant probability of packet loss in
both directions on any communication link, but later removed
this assumption and still proved the algorithm convergence
in [12]. They also extended their work to converge faster
using the accelerated consensus technique [13]. Nonetheless,
their algorithm is limited by a synchronized method of
communication i.e. after every corrective iteration, all nodes
behave as if no packet was lost. Forcing all nodes to do a
corrective iteration at the same time is not possible in an
asynchronous mode of communication.

Kar et al. studied the distributed average consensus prob-
lem with challenges arising in analog communication such
as channel noise [14] and quantized data [15]. Both their
algorithms work on switching topologies, but are unable to
deal with packet loss and/or delay.

Mehyar et al. devised an asynchronous algorithm using
simple messaging-passing schemes which is able to handle
dynamic topologies but assumes a reliable mode of commu-
nication [16]. In fact that is why the authors emulate their
algorithm on a real-world TCP/IP network and not a UDP/IP
network.

Wu et al. studied average consensus with both delays and
packet losses in communication [17]. But they treat packet
losses as absence of communication links i.e. packet losses
either simultaneously exist on both directions or they do not.
Thus they avoid discussing cases of unreliable communica-
tion in which packet losses are asymmetric and can arbitrarily
happen on any side of communication, as is the case when
implementing an algorithm in UDP. Zhang et al. dealt with
both communication delay and asymmetric packet loss [18].
But they assume that the delay is not larger than a pre-
defined sampling period. As a result, their resulting algorithm
is pseudo-asynchronous because it still suffers from the main
weakness in synchronized communication i.e. the node with
slowest communication becoming a bottleneck for the whole
network.

Fagnani et al. modeled the problem as a digraph in
order to deal with switching topologies and packet losses
simultaneously by just compensating for random link failures
[20]. However, the strategies proposed do not always lead
to the exact average. Hadjicostis et al. also modeled the
problem as a digraph and provided a robust algorithm for
converging to the true average despite packet losses and
switching topologies; the limitation being that their algorithm
is synchronous [19]. Although one variant of their algorithm
handles the problem of unknown out-degrees at each node,
a problem rarely discussed in other works.

Khosravi et al. studied the issues in wireless sensor
networks [21] but they only talk about packet delay and
communication link failure, and avoid any discussion on
packet loss. Recently they proposed an asynchronous gossip-
based algorithm for distributed averaging [22], but it only
works on fixed strongly connected topologies.

Eyal et al. [23] built a robust live monitoring system
for dynamic sensor networks. Their underlying average
consensus algorithm is asynchronous, handles node fail-
ures/recoveries along with packet losses in communication,
and also works with switching network topologies. Yet
they assume that the messages which are not lost on any
communication link, arrive in a FIFO order. It is not clear
how critical this assumption is to the convergence proof of
their algorithm. Since the UDP specification does not say
anything about the message order, this algorithm can only
be implemented with a protocol like TCP which guarantees
in-order delivery [24].

Kriegleder et al. proposed an asynchronous implemen-
tation to control a distributed embedded system for flight



which converges to error-free average, does not assume re-
liable communication and handles dynamic topologies [25].
Furthermore, it supports dynamic consensus i.e. ability of
the network to converge to new average if any of the nodes
update its stored value. Due to all these characteristics, we
believe this is the most suitable implementation for practical
usage in packet-switched wireless networks of all the existing
algorithms in literature.

III. ANALYSIS OF KRIEGLEDER ET AL’S
IMPLEMENTATION

We start by formally defining the problem statement.
Then we describe the standard distributed average consensus
algorithm which provides the basis to Kriegleder et al’s
implementation. Finally, we analyze their implementation
and point out a communication overhead in it.

A. Problem Formulation

We model a multi-agent network as an undirected con-
nected graph G = {N , E} consisting of a set of nodes N
along with a set of edges E. Each edge {i, j} ∈ E represents
a bidrectional communication link. The set of neighbors
belonging to node i is denoted by Ni = {j | {i,j} ∈ E}. Each
node i has a state xi(t) at time t ≥ 0 and a stored value zi.
The states are initialized such that xi(0) = zi where zi ∈ R
for the node i. Now we want that ∀ i ∈ N:

lim
t→∞

xi(t) =
1

N

N∑
n=1

zi

B. Standard Average Consensus

Standard distributed average consensus algorithm [9] as-
sumes reliable communication between neighbors and runs
in a synchronous mode. Its iterations can be summarized as
a combination of two steps: 1) an agent i communicates its
state information to all its neighbors j ∈ Ni 2) all agents
update their state through a linear combination of their own
state and the state information of neighbors received in the
previous step. The procedure can be mathematically written
as:

xi(t+ 1) = xi(t) + α
∑
j∈Ni

(xj(t)− xi(t)) (1)

So in other words, each agent update its state using the
disagreement of states with all its neighbors, scaled by a
factor of α. Thus the convergence rate of this algorithm de-
pends on the scaling factor used. Convergence is guaranteed
as long as the following constraint is met:

0 < α <
1

dmax

where dmax denotes the maximum degree among all nodes
in the network. The constraint can be fulfilled by realizing
an upper bound on the maximum possible neighbors for any
node.

C. Kriegleder et al’s Contribution

Kriegleder et al noticed that the procedure in (1) can be
written as:

xi(t+ 1) = zi + α
∑
j∈Ni

δij(t+ 1)

δij(t+ 1) = δij(t) + xj(t)− xi(t)

where δij(t) represents the cumulative disagreement of
node i with its neighbor j until time t.

In this way, the algorithm becomes explicitly dependent on
zi which makes it capable of dynamic consensus i.e. ability
of the network to converge to new average if any of the nodes
update its stored value. Furthermore, the algorithm can now
also handle switching topologies by setting the appropriate
δij to zero whenever a node leaves / joins the network.
Although, this does assume that all nodes are capable of
detecting any change in topology due to their immediate
neighbors.

They also observed that whenever any change 4ij = xj
- xi is made to δij at node i, it is compensated by the
opposite change 4ji = - 4ij to δji at node j. This is a
necessary condition to keep the sum of states across the
whole network constant, which, in-turn, is essential if the
consensus iterations are required to converge to the exact
average. By exploiting this observation along with a directed
communication scheme, the standard algorithm was made
asynchronous.

Accordingly, all nodes are given unique numerical identi-
fiers (ID) in the Kriegleder et al’s algorithm. Let a node with
lower ID start an interaction with any of its neighbors with
higher ID by sending its state value. The neighbor then uses
this information to find the disagreement in states, updates it
own state value on the basis of this disagreement, and finally
responds back by sending the disagreement calculated earlier.
This makes the node which started the interaction, update its
state value too on the basis of the information received. In
this way, one loop of interaction is closed in which both
the nodes have changed their values asynchronously, while
keeping the sum constant.

The message sending procedure at each node is run at
periodic intervals so to keep the interactions going on and to
also compensate for packet losses (if any). On each interval,
nodes communicate with all of their neighbors sending either
their state or the disagreement information depending on
the relative IDs. All data sent get marked with sequence
numbers to ensure that a node does not use a given neighbor’s
information multiple times within the same loop of inter-
action. The sequence numbers are initialized and updated
carefully to make sure the algorithm works as expected. This
ultimately makes the algorithm implementable in UDP. We
encourage the readers to look at their paper [25] for complete
implementation details.

D. Communication Overhead

We observe that there are many cases in which the algo-
rithm would end-up wasting network bandwidth. Consider a



scenario in which there are just two nodes A and B connected
to each other. Now as the average consensus algorithm is
running:
• If the timeout set for A’s message sending procedure

is such that the packet it sends to B arrive with delay
greater than the timeout, A will end up sending same
information to B. And finding an ideal value for timeout
is non-trivial because of the arbitrary delays present in
real-world networks.

• If the packets sent by A are getting lost continuously,
but A is still able to receive B’s packets, all those re-
ceived packets from B will contain same information as
B has not heard from A in a while and has consequently
not updated its state either.

Because of sequence numbers appended in data sent /
received, a node can not use same information from its
neighbor multiples times. Hence in both of the above cases,
the nodes have no option but to simply ignore all sets of
packets with same information.

Algorithm 1 Message Sending Procedure for agent i.
1: j: Neighbor ID
2: xi: State of i
3: 4ij : Current disagreement between i and j

4: procedure MSGSENDER(j,xi, 4ij )
5: if j > i then
6: DATA← xi
7: else
8: DATA←4ij

9: SEND DATA

IV. PROPOSED MODIFICATION

On a closer analysis, it can be seen that the techniques
used by the original UDP-based algorithm for compensating
packet losses and delays are a subset of the ones used by
TCP i.e. retransmissions and sequence numbers on packets
sent. Thus, we propose to simply use a TCP-based imple-
mentation. We hypothesize that the resulting algorithm will
perform at least as good as the original algorithm in ideal
network conditions, but will be communication-efficient in
terms of bytes sent / received in the presence of packet
losses and delays typical in any real-world network. The
hypothesis seems intuitive, as TCP was actually built for the
task of efficient communication in the presence of network
adversities.

The resulting implementation can be seen as a combination
of two functions described in Algorithm 1 and 2. These look
very similar to the ones in original implementation, with
the only differences being removal of timeout and sequence
numbers handling part.

As we do not run the message sending procedure at regular
intervals but instead place a call to it inside the message han-
dling procedure, we need a way to kick-start the algorithm.
We do so by making every node run Algorithm 1 w.r.t all of

their neighbors with greater IDs. This starts the algorithm and
makes all nodes in the network communicate with each other
in an asynchronous fashion, while asymptotically converging
to the exact average.

As far as the aforementioned two cases are concerned, the
TCP-based implementation would avoid them by 1) Varying
the timeout to efficiently tackle network delay 2) Ensuring
that for all pairs of neighbors, only one of them is in the
process of communicating state / disagreement at any instant.

Algorithm 2 Message Handling Procedure for agent i;
executed upon reception of a message.

1: zi: Initial value of i
2: xi: State of i
3: δij : Current disagreement between i and j
4: α: Scaling factor

5: j: Neighbor ID
6: DATA: Data received from j
7: procedure MSGHANDLER(j,DATA)
8: if j < i then
9: 4ij ← DATA - xi

10: else
11: 4ij ← -DATA
12: δij ← δij +4ij

13: xi ← zi + α
∑

j∈Ni
δij

14: MsgSender(j,xi, 4ij)

Fig. 1. Different network topologies used in our experiments.

V. EXPERIMENTAL EVALUATION
A. Implementation Details

We built a test bed of five Raspberry Pi 2 Model B
computers running Raspbian OS and connected via 802.11
wireless ad hoc network. All of them were equipped with
a USB wireless antenna which used the rtl8192cu wireless
driver. The nodes were within wireless range to communicate
with each other. Different topologies, as illustrated in the
figure 1, were emulated by allowing communication only
between the perspective neighbors in any topology.

Consensus was done on a vector of length hundred. The
information provided to each node included its neighbors,



Fig. 2. Amount of bytes sent during the consensus iterations of the two algorithms, with different topologies. The measurement at each node was done
until the euclidean error between estimated average and ground truth fell below 1e-5.

initial vector and the ground truth vector i.e. exact average
of all initial vectors across the network. Values in the initial
vectors were randomly sampled between one and hundred.

We used Python programming language to implement the
original and modified algorithms. The selection of Python
was based on its prototypical nature and popularity in IoT
applications. The differences between two implementations
were the usage of UDP in original-vs-TCP in modified and
some minor changes mentioned in the previous section. A
constant timeout value, required by the original algorithm
only, was set to 0.2 seconds which was much higher than the
max round-trip time between any two nodes. To make the
two algorithms comparable, we fixed the convergence rate
by using a constant scaling factor. And in all experiments,
each node ran consensus iterations and measured network
statistics until the euclidean distance between its estimated
average vector and the ground truth vector fell below 1e-5.

We could not find a way to reliably measure network
statistics for the exact OS processes tied to our algorithms.
Instead, we used the cross-platform python library psutil
to measure the number of bytes sent / received by the
wireless antenna whenever the consensus algorithms were
running. We ensured that the antenna was not being utilized
for any other task when our experiments were running. To
further reduce the effects of any possible interference, each
experiment was run multiple times and only the average
across all the runs is reported in the results section.

Linux tool netem was used to emulate network adversities.
Accordingly, a 15% packet loss and a delay of 15 ± 10
milliseconds sampled from a normal distribution were added
to all nodes. Network adversities found in practice are not
purely random. So to approximate, a correlation value of
25% was also used. This helped in emulating burst packet
losses and delays.

B. Results

Figure 2 shows the amount of bytes sent during the
consensus iterations of the two algorithms, with different
topologies. We observed similar trends for the amount of
bytes received in our experiments, and do not show them
here for conciseness. Our experiments showed that both

implementations converge, and the convergence rate is in
accordance with the graph topology. For example, it is well
known that information diffusion in star topology is easier
than in line topology. By observing the total amount of bytes
sent across all nodes for either implementation in star-vs-
line topology results, a similar conclusion is reached. In
Ring topology, each node has two neighbors, so the amounts
of bytes sent/received by nodes are expected to be roughly
equivalent. In Star topology, central node is connected to
all other nodes, so the amount of bytes sent/received by the
central node is expected to be far greater than any other node.
In Line topology, middle three nodes are connected to two
neighbors each but the information diffusion is highest for
the central node. Our results are in accordance with these
basic expectations, which appear because of different levels
of graph connectedness. This increases the confidence that
the two implementations we wrote are bug-free.

In all three topologies, the amount of bytes sent by any
node are lesser in our modified TCP-based implementation
than the original UDP-based implementation. To be precise,
the average percent change, across all nodes, in the amount
of bytes sent when changing from original to modified
implementation, was found to be -24% in case of Ring
topology, -36% in case of Star topology and -28% in case
of Line topology. This confirms our hypothesis that in a
realistic setting with both packet loss and delay, the proposed
modification makes the original algorithm more communica-
tion efficient. The exact amount of percent change depends
on a lot of factors such as the timeout set in the original
algorithm, amount of packet loss and delay, and the graph
connectedness. In our experiments, we set the timeout to a
much relaxed value of 0.2 seconds to illustrate that selecting
the ideal value is a non-trivial task.

In figure 3, we present results to show the exact effect
of different types of network adversities on the amounts of
bytes sent for the two algorithms in case of Ring topology.
Accordingly, without packet loss and delay both algorithms
are equivalent in terms of communication cost. The exact
amount of average percent change was found to be +1%. The
percent change is not as much as one expects by looking
at the relative packet header size of UDP-vs-TCP because



Fig. 3. Amount of bytes sent during the consensus iterations of the two algorithms, with different network adversities.

(1) We are doing vector consensus, and thus the size of
datagram in each packet is way larger than the header size in
either case (2) TCP implementation adds sequence number in
packet header, while the UDP implementation adds sequence
number in datagram so that effect is neutralized.

In presence of packet delay only, the modified algorithm
presents most savings in network utilization i.e. average
percentage change of -25% in the amount of bytes sent, as
compared to -24% in case of both delay and loss. This is
expected as the TCP protocol is well suited to handle packet
delays. It does so by varying its timeout in sophisticated
ways. Some implementations initially set the timeout to
2*RTT and then double it every time an expected ack is not
received. This is efficient in contrast to a constant timeout set
in the original UDP-based algorithm as it sends the packets
at fixed regular intervals regardless of network conditions.

In presence of packet loss only, the modified algorithm
does not save as much bandwidth as in other cases i.e the
percentage change in this case was found to be only -7%.
This is also expected as both implementations handle packet
losses through retransmissions.

Our results show that the bandwidth savings in individual
cases, i.e. packet loss only or packet delay only, do not add
up when both adversities simultaneously affect the network.
So for ring topology, the percentage change in bytes sent
was found to be -24% in presence of both packet loss and
delay. With packet losses only, the amount was -25% and
with packet delays only, the amount was -7%. This is because
of an inherent limitation in TCP to distinguish between a
packet loss and delay, which causes it to work not as well
as in an environment with packet delay only. Nonetheless,
even in the combined case, the bandwidth savings are sizable
enough for us to confidently say that our modified TCP-
based implementation is indeed communication-efficient as
compared to the original UDP-based implementation.

VI. CONCLUSIONS

In this work, we proposed a TCP-based distributed average
consensus algorithm suitable for packet-switched networks
and empirically demonstrated it to be more communication-
efficient as compared to its UDP-based variant. We believe
our insights show the need for a robust distributed average

consensus algorithm, implementable in UDP, which does not
directly or indirectly end up relying on packet retransmis-
sions and sequence numbers to handle packet losses and
delays. The only existing works in literature we see in this
direction are [11] and [23], but the former only runs in a
synchronous mode and the latter cannot be implemented in
UDP because of the FIFO order assumption.

In future, we would like to see the effect of our proposed
modification on the CPU time of the original algorithm.
This could help us make a conclusive statement about the
power consumption of the two implementations. Also, in
this work we ignored the convergence speed as both the
implementations used same convergence factor and were thus
inherently similar in the way they did computation; they
only differed in the ways of communication. So, another
interesting extension to this work would be the comparison of
all existing TCP-based robust distributed average consensus
algorithms in terms computation and communication cost, as
well as convergence speed.

REFERENCES

[1] Schenato, Luca, and Federico Fiorentin. ”Average TimeSync: a
consensus-based protocol for time synchronization in wireless sensor
networks1.” IFAC Proceedings Volumes 42.20 (2009): 30-35.

[2] Olfati-Saber, Reza, and Jeff S. Shamma. ”Consensus filters for sensor
networks and distributed sensor fusion.” Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC’05. 44th IEEE
Conference on. IEEE, 2005.

[3] Fax, J. Alexander, and Richard M. Murray. ”Information flow and
cooperative control of vehicle formations.” IEEE transactions on
automatic control 49.9 (2004): 1465-1476.

[4] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for
nearest neighbor load balancing. Parallel computing, 25:789812, 1999.

[5] Raja, Haroon, and Waheed U. Bajwa. ”Cloud K-SVD: Computing
data-adaptive representations in the cloud.” Communication, Control,
and Computing (Allerton), 2013 51st Annual Allerton Conference on.
IEEE, 2013.

[6] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In
Decision and Control, 2007 46th IEEE Conference on, pages 5492
5498, Dec. 2007.

[7] S. Barbarossa and G. Scutari. Decentralized maximum-likelihood esti-
mation for sensor networks composed of nonlinearly coupled dynam-
ical systems. Signal Processing, IEEE Transactions on, 55(7):3456
3470, 2007.

[8] B. Ermentrout. An adaptive model for synchrony in the firefly pterop-
tyx malaccue. J. Math. Biology, 29(6):571-585, June 1991

[9] Xiao, Lin, and Stephen Boyd. ”Fast linear iterations for distributed
averaging.” Systems & Control Letters 53.1 (2004): 65-78.



[10] Xiao, Lin, Stephen Boyd, and Sanjay Lall. ”Distributed average
consensus with time-varying metropolis weights.” Automatica (2006).

[11] Chen, Yin, et al. ”Corrective consensus: Converging to the exact
average.” Decision and Control (CDC), 2010 49th IEEE Conference
on. IEEE, 2010.

[12] Chen, Yin, et al. ”Corrective consensus with asymmetric wireless
links.” Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on. IEEE, 2011.

[13] Chen, Yin, et al. ”Accelerated corrective consensus: Converge to the
exact average at a faster rate.” American Control Conference (ACC),
2011. IEEE, 2011.

[14] Kar, Soummya, and Jos MF Moura. ”Distributed consensus algorithms
in sensor networks with imperfect communication: Link failures and
channel noise.” IEEE Transactions on Signal Processing 57.1 (2009):
355-369.

[15] Kar, Soummya, and Jos MF Moura. ”Distributed consensus algorithms
in sensor networks: Quantized data and random link failures.” IEEE
Transactions on Signal Processing 58.3 (2010): 1383-1400.

[16] Mehyar, Mortada, et al. ”Asynchronous distributed averaging on
communication networks.” IEEE/ACM Transactions on Networking
(TON) 15.3 (2007): 512-520.

[17] Wu, Jian, and Yang Shi. ”Average consensus in multi-agent systems
with time-varying delays and packet losses.” American Control Con-
ference (ACC), 2012. IEEE, 2012.

[18] Zhang, Ya, and Yu-Ping Tian. ”Consensus of data-sampled multi-agent
systems with random communication delay and packet loss.” IEEE
Transactions on Automatic Control 55.4 (2010): 939-943.

[19] Hadjicostis, Christoforos N., Nitin H. Vaidya, and Alejandro D.
Domnguez-Garca. ”Robust distributed average consensus via exchange
of running sums.” IEEE Transactions on Automatic Control 61.6
(2016): 1492-1507.

[20] Fagnani, Fabio, and Sandro Zampieri. ”Average consensus with packet
drop communication.” SIAM Journal on Control and Optimization
48.1 (2009): 102-133.

[21] Khosravi, Adel, and Yousef S. Kavian. ”Challenging issues of average
consensus algorithms in wireless sensor networks.” IET Wireless
Sensor Systems 6.3 (2016): 60-66.

[22] Khosravi, Adel, and Yousef Seifi Kavian. ”Broadcast Gossip Ratio
Consensus: Asynchronous Distributed Averaging in Strongly Con-
nected Networks.” IEEE Transactions on Signal Processing 65.1
(2017): 119-129.

[23] Eyal, Ittay, Idit Keidar, and Raphael Rom. ”LiMoSense: live monitor-
ing in dynamic sensor networks.” Distributed computing 27.5 (2014):
313-328.

[24] Postel, J., ”Transmission Control Protocol” RFC 761,
USC/Information Sciences Institute, January 1980.

[25] Kriegleder, Maximilian, Raymond Oung, and Raffaello D’Andrea.
”Asynchronous implementation of a distributed average consensus
algorithm.” Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013.


