
Measurement Techniques to Understand How Diversity

in TLS Implementations & Deployments

Influences Protocol Security

by

Muhammad Talha Paracha

A dissertation submitted in satisfaction of the requirements
for the degree of Doctor of Philosophy in Computer Science

at Northeastern University in Boston, Massachusetts

thesis committee

David Choffnes, Northeastern University

Alan Mislove, Northeastern University

Christo Wilson, Northeastern University

Taejoong Chung, Virginia Tech

November 2023

PhD Thesis Approval
Northeastern University
Khoury College of
Computer Sciences

Author:

PhD Thesis Approval to complete all degree requirements for the above PhD program.

KHOURY COLLEGE APPROVAL:

Associate Dean for Graduate Programs Date

Thesis Advisor Date

Thesis Reader Date

Thesis Reader Date

Thesis Reader Date

Thesis Reader

COPY RECEIVED BY GRADUATE STUDENT SERVICES:

Recipient’s Signature Date

s e e e h s sh e he s e e e he e
e he sse e . e e e s he e he e e

he he s e e s e s e

PhD Program:

Thesis Title:

omputer cience bersecurit Personal ealth nformatics

Date

Muhammad Talha Paracha

Measurement Techniques to Understand How Diversity in TLS
Implementations & Deployments Influences Protocol Security

✓

11/27/2023

11/27/23

11/27/23

11/27/23

11/28/2023

29 November 2023

To my parents, Ammi and Abbu. May you two keep smiling forever.

i

Abstract

TLS is a fundamental and widely-used network security protocol. On one hand, the protocol
has undergone rigorous development over the past 25 years and offers sophisticated theoretical
guarantees. At the same time, its adoption has grown from traditional computers to handheld
devices and IoT ones, with these settings presenting varying constraints and caveats. As a con-
sequence, a large number of TLS implementations and deployments exist and cater to different
needs. Unfortunately, this results in a gap between what the protocol offers in theory vs how it
works in practice; the diversity in the ecosystem not only increases the probability of a mistake
during protocol development and use, but also leads to customizations with unexpected side effects.

The thesis of this dissertation is that the rich diversity in TLS implementations & deployments
introduces opportunities to harm protocol security, and that the harms can be identified (and miti-
gated) using rigorous measurement techniques.

My work sheds light on previously unexplored aspects of TLS deployment in three different
settings; web, mobile and IoT devices. More specifically, I (a) study web content availability
and consistency over HTTP/S to better understand the obstacles to a TLS-by-default web, (b)
conduct longitudinal experiments on a large number of consumer IoT devices to evaluate TLS
effectiveness in that setting, and (c) revisit certificate pinning policies in mobile applications to
examine implementations with advanced network security techniques that go beyond what the
protocol offers.

In addition to exploring diversity in deployments, my work leverages the diversity in TLS im-
plementations alongside recent advances in generative language models to automate bug discovery.
More specifically, I present a novel approach of generating synthetic TLS certificates using lan-
guage models that reveal a wide range of previously unobserved and interesting implementation
differences with security implications.

My work has led to vulnerability disclosures, a security feature at a major CDN provider, a

presentation at an IRTF body to inform protocol engineering, and novel auditing techniques that

enable greater transparency about real-world protocol effectiveness. I believe the insights from my

work can assist in better modeling of software security beyond TLS, the techniques proposed push

state-of-the-art for network measurement, and the use of language models to generate synthetic test

cases can prove valuable in domains where software inputs can be expressed in natural language.

Contents

1 Introduction 1

2 Background and Related Work 5
2.1 Protocol Basics . 5
2.2 TLS Security . 6
2.3 Network Measurement . 7

3 TLS Usage in Consumer IoT Devices 9
3.1 Goals . 10
3.2 Methodology . 11

3.2.1 Testbed . 11
3.2.2 Instrumentation . 13

3.3 Results . 16
3.3.1 TLS Connection Security . 16
3.3.2 Certificate Validation . 23
3.3.3 Diversity of TLS Behavior . 26

3.4 Discussion . 28
3.5 Conclusion . 30

4 Web Content Availability and Consistency over HTTP/S 32
4.1 Methodology . 33

4.1.1 HTTP/S Inconsistencies . 33
4.1.2 Crawling Overview . 33
4.1.3 Identifying Inconsistencies . 35

4.2 Results . 38
4.2.1 Summary Results . 38
4.2.2 Factors Influencing Inconsistencies 40
4.2.3 Comparing HTTPS Adoption Metrics 41

4.3 Discussion . 42
4.4 Conclusion . 42

5 TLS Certificate Pinning in Mobile Applications 44
5.1 Background and Motivation . 45
5.2 Goals . 46
5.3 Methodology . 47

ii

CONTENTS iii

5.3.1 Datasets . 47
5.3.2 Static Analysis . 48
5.3.3 Dynamic Analysis . 49
5.3.4 Circumventing Pinning . 51
5.3.5 PII Analysis . 52
5.3.6 iOS Background Traffic . 52

5.4 Results . 53
5.4.1 Pinning in Common Apps . 55
5.4.2 Pinning in Popular vs Random Apps 57
5.4.3 Certificate Analysis . 58
5.4.4 Connection Security . 62
5.4.5 PII in Pinned vs Non-Pinned Traffic 62
5.4.6 Limitations . 63

5.5 Discussion . 64
5.6 Conclusion . 65

6 Testing TLS Certificate Validation Using Generative Language Models 66
6.1 Background and Motivation . 67
6.2 Goals . 71
6.3 Methodology . 71

6.3.1 Certificate Datasets . 72
6.3.2 Language Models . 73
6.3.3 Differential Testing Framework . 74

6.4 Results . 75
6.4.1 Discrepancies and Code Coverage . 76
6.4.2 Certificate Diversity . 78
6.4.3 Security Implications . 80

6.5 Discussion . 82
6.6 Conclusion . 83

7 Concluding Remarks 84

Acknowledgements

First and foremost, I want to acknowledge my advisor David Choffnes for his absolute
mentorship throughout my doctoral journey. I am deeply grateful for having witnessed and
learned from Dave’s vision for research, attention to detail in methodology, and aspiration
to do impactful work. I know I will continue to cherish these learnings in my career going
forward. Over the years, I have also realized the importance of kindness, understanding,
and support I received from Dave that enabled me to succeed in my program. Work and
health during COVID-19 were particularly challenging to handle, but Dave always helped
brainstorm ideas and suggest resources to manage such situations. Thank you, Dave.

I want to thank members of my thesis committee Alan Mislove, Christo Wilson, and
Taejoong (Tijay) Chung for their support and guidance. I have been fortunate to meet these
people at the start of my program and I admire the positivity they brought into all of our
encounters. I now understand well how the company of pleasant colleagues makes research
all the more interesting. In the same vein, I want to thank Martina Lindorfer for providing
me with support and guidance (and, a desk with her students at TU Wien) during the last
few months of my program amid my visa issues. And I want to thank Daniel Dubois for
being a mentor and friend as our most experienced and senior labmate.

I want to thank my friends and community at Northeastern University and in Boston for
all the amazing memories. Thank you Prasanth for being a great friend, and for all the
discussions on work (or politics) during our table tennis games. Thank you Ali, Amogh,
Domien, Harshad, Shuwen, Ben, Clifton, Aziz, Johanna, Tianrui, Narmeen, Fan for all the
fun hangouts and conversations. I am also thankful to my dear friends outside of work, Shah
Rukh, Asad, Hassan, Tooba, Rida, Mahnoor, and Arsalan for their presence in my life. And
I am very thankful to Geeticka for her support and belief in me to continue my program
with a passion and excitement that had diminished somewhere along the way.

Last, I want to acknowledge my family: Ammi (Farhat), Abbu (Shaukat), Aapi (Sidrah),
Bhai (Suleman), Tayyab, and Noor. Although my Mom and Dad cannot relate to the journey
of a doctoral program, their deep encouragement towards me in pursuing my academic
ambitions has always been there. And although my Mom and Dad cannot relate to the
journey of living in a foreign country, their deep care towards me to make me feel belonged
has always been there. I am thankful to all of my family for their continuous love and
support that enables me to keep going forward in my life and career.

iv

Chapter 1

Introduction

Transport Layer Security (“TLS”, the counterpart to web-specific HTTPS) is the de facto,
IETF-standard, Internet security protocol that provides confidentiality, integrity, and au-
thenticity to network communications. By November 2022, 99% of pages browsed through
Google Chrome used TLS [1]. Both Android and iOS default to using TLS for network traf-
fic from apps (unless explicitly opted-out) [2], [3]. Prior research indicates that IoT devices
mainly rely on TLS as well for network security [4].

TLS is designed using cryptographic primitives and standardized through protocol specifi-
cation (“spec”) documents in plain writing. The protocol functionality is then programmed
into TLS libraries (“implementations”) in accordance with the spec. At the time of this writ-
ing, at least 18 TLS implementations exist and cater to different needs. For instance, some
implementations aim to meet particular performance demands (MbedTLS has a smaller foot-
print for embedded devices), while others differ in their coding style and language (LibreSSL
and BoringSSL are forks of OpenSSL managed by different teams). These implementations
are then configured and deployed by administrators in different settings (“deployments”),
either as-is, or as a part of a larger framework (e.g., NGINX web server uses OpenSSL).

The thesis of this dissertation is that the rich diversity in TLS implementations & deploy-
ments introduces opportunities to harm protocol security, and that the harms can be identified
(and mitigated) using rigorous measurement techniques.

First, this diversity increases the probability of a mistake during protocol development
and use. Programming bugs are regularly found in TLS implementations (e.g., Heartbleed),
while misconfigurations are common in TLS deployments (e.g., using deprecated protocol
features). Second, this diversity results in customizations with side effects that cannot be
predicted from the protocol spec alone. For instance, TLS-enabled websites typically support
the insecure HTTP protocol as well, due to browsers HTTP-by-default policy – this behavior
unfortunately undermines protocol security and leaves site visitors vulnerable to a multitude
of attacks (e.g., [5]–[7]).

With respect to TLS deployments, my work sheds light on previously unexplored aspects
of protocol use in three different settings; web, mobile and IoT devices. For each setting, my
research introduces novel network measurement techniques that highlight issues in protocol

1

CHAPTER 1. INTRODUCTION 2

security specific to that setting. With respect to the TLS implementations, my work proposes
a novel technique that uses differential testing alongside generative language models with
the aim to automate bug discovery. While it is substantially time-consuming to manually
scrutinize a TLS implementation for programming bugs, prior works have used different TLS
implementations as cross-referencing oracles to systematically find bugs. My research extends
this line of work by learning X.509 TLS certificate representations using generative language
models, and sampling from the learned representations to obtain synthetic certificates that
reveal implementation differences with security implications.

In detail, my published works (Tables 1.1 and 1.2) explore TLS use in:

Consumer IoT Devices (IMC 2021) To evaluate TLS effectiveness in this setting, we
gather more than two years of TLS network traffic from IoT devices, conduct active probing
to test for vulnerabilities, and develop a novel blackbox technique for exploring the trusted
root stores in IoT devices by exploiting a side-channel through TLS Alert Messages. We
find a wide range of behaviors across devices, with some adopting best security practices
but most being vulnerable in one or more of the following ways: use of old/insecure protocol
versions and/or ciphersuites, lack of certificate validation, and poor maintenance of root
stores. Specifically, we find that at least 8 IoT devices still include distrusted certificates in
their root stores, 11/32 devices are vulnerable to TLS interception attacks, and that many
devices fail to adopt modern protocol features over time.

Popular Websites (TMA 2020) To better understand the obstacles to a TLS-by-
default web, we crawl beyond the landing page to understand HTTPS content unavailability
and inconsistency issues that remain in today’s popular HTTPS-supporting websites. Our
analysis shows that 1.5% of the HTTPS-supporting websites from the Alexa top 110k have
at least one page available via HTTP but not HTTPS. Surprisingly, we also find 3.7% of
websites with at least one URL where a server returns substantially different content over
HTTP compared to HTTPS. We propose new heuristics for finding these unavailability and
inconsistency issues, explore several root causes, and identify mitigation strategies. Taken
together, our findings highlight that a low, but significant fraction of HTTPS-supporting
websites would not function properly if browsers use TLS-by-default.

Mobile Applications (IMC 2022) To examine implementations with advanced network
security techniques that go beyond what the TLS protocol offers, we thoroughly investigate
the use of certificate pinning on Android and iOS. We collect 5,079 unique apps from the two
official app stores: 575 common apps, 1,000 popular apps each, and 1,000 randomly selected
apps each. We develop novel, cross-platform, static and dynamic analysis techniques to
detect the usage of certificate pinning. We find certificate pinning as much as 4 times
more widely adopted than reported in recent studies. More specifically, we find that 0.9%
to 8% of Android apps and 2.5% to 11% of iOS apps use certificate pinning at run time
(depending on the aforementioned sets of apps). We then investigate which categories of
apps most frequently use pinning (e.g., apps in the “finance” category), which destinations
are typically pinned (e.g., first-party destinations vs those used by third-party libraries),
which certificates are pinned and how these are pinned (e.g., CA vs leaf certificates), and the
connection security for pinned connections vs unpinned ones (e.g., the use of weak ciphers

CHAPTER 1. INTRODUCTION 3

Table 1.1: List of peer-reviewed publications part of this dissertation. (*) indicates equal
contribution.

Conference Publication

TMA 2020 A Deeper Look at Web Content Availability and Consistency over
HTTP/S
Talha Paracha, Balakrishnan Chandrasekaran, David Choffnes,
Dave Levin

IMC 2021 IoTLS: Understanding TLS Usage in Consumer IoT Devices
Talha Paracha, Daniel Dubois, Narseo Vallina, David Choffnes

IMC 2022 A Comparative Analysis of Certificate Pinning in Android & iOS
Amogh Pradeep*, Talha Paracha*, Protick Bhowmick, Ali Da-
vanian, Abbas Razaghpanah, Taejoong Chung, Martina Lindorfer,
Narseo Vallina, Dave Levin, David Choffnes

Table 1.2: List of related peer-reviewed publications.

Conference Publication

PETS 2020 When Speakers Are All Ears: Characterizing Misactivations of IoT
Smart Speakers
Daniel Dubois, Roman Kolcun, Anna Maria, Talha Paracha, David
Choffnes, Hamed Haddadi

PETS 2021 Blocking without Breaking: Identification and Mitigation of Non-
Essential IoT Traffic
Anna Maria, Daniel Dubois, Roman Kolcun, Talha Paracha,
Hamed Haddadi, David Choffnes

IMC 2022 Respect the ORIGIN! A Best-case Evaluation of Connection Coalesc-
ing in The Wild
Sudheesh Singanamalla, Talha Paracha, Suleman Ahmad,
Jonathan Hoyland, Luke Valenta, Yevgen Safronov, Peter Wu, An-
drew Galloni, Kurtis Heimerl, Nick Sullivan, Christopher A. Wood,
Marwan Fayed

IMC 2023 Behind the Scenes: Uncovering TLS and Server Certificate Practice
of IoT Device Vendors in the Wild
Hongying Dong, Hao Shu, Vijay Prakash, Yizhe Zhang, Talha
Paracha, David Choffnes, Santiago Torres-Arias, Danny Huang,
Yixin Sun

or improper certificate validation).

Further, my work explores the diversity in TLS implementations using:

CHAPTER 1. INTRODUCTION 4

Differential Testing and Generative Language Models (in preparation) Certifi-
cate validation is a crucial step in TLS. Prior research has shown that differentially testing
a corpus of synthetic TLS certificates can reveal critical security issues (e.g., accidentally
accepting untrusted v1 certificates). Such work relies on a variety of techniques (e.g., ran-
dom mutations, program coverage guidance) to obtain synthetic certificates that execute
diverse code paths and trigger new bugs, which are then caught by comparing outputs of
multiple TLS libraries against each other. Inspired by this prior work, we identify a new
opportunity for differential testing: generative language models based on neural networks
(e.g., ChatGPT), which are popular today for applications such as generating content, writ-
ing code and conversing with users. The core insight in our work is that TLS certificates can
be expressed in natural language, as they are defined in a standard (X.509) that supports
human readability. In this work, we present a novel approach of generating synthetic TLS
certificates using off-the-shelf generative language models. Our models are able to (i) learn
representations for TLS certificates, and (ii) generate new certificates that (usually) con-
form to the protocol standard but produce diverse behavior during the certificate validation
process for several TLS implementations. Our results show that these synthetic certificates
produce an order of magnitude more “distinct discrepancies” than baseline during differen-
tial testing, and reveal a wide range of previously unobserved and interesting behavior with
security implications.

Apart from these technical contributions, the work on IoT devices led to vulnerability
disclosures to 8 manufacturers. It was also presented to a group at the Internet Research
Task Force (IRTF) [8] with the aim to inform protocol engineering and practice. The work
on web HTTP/S content consistency inspired the development of SSL/TLS Recommender
at Cloudflare [9] that helps websites upgrade to TLS. All works introduce novel auditing
techniques that can be further used by administrators and investigators to better understand
real-world protocol effectiveness.

This dissertation is structured as follows. Chapter 2 provides background and related
work. Chapters 3-5 detail peer-reviewed works that explore TLS deployments in distinct
settings. Chapter 6 presents the use of generative language models for differentially testing
TLS implementations. Chapter 7 provides concluding remarks with an overview of the
lessons learned from work in this dissertation.

Chapter 2

Background and Related Work

Since Netscape started work on the TLS predecessor, Secure Sockets Layer (SSL), ≈25 years
ago, TLS has undergone rigorous development featuring various standardization efforts and
releases—SSL 2.0 (1995), SSL 3.0 (1996), TLS 1.0 (1999), TLS 1.1 (2006), TLS 1.2 (2008)
and TLS 1.3 (2018). This chapter provides relevant background information about TLS
alongside prominent implementation and deployment insights from the literature that relate
to the work in this thesis.

2.1 Protocol Basics

Root stores TLS generally uses digital certificates that bind host identities with crypto-
graphic material. These certificates are issued by Certificate Authorities (CAs) and can be
“revoked” if they get compromised. Server authentication is the most common TLS usage
where clients store relevant information about one or more trusted CAs root certificates and
require that servers present valid certificates from one of them to authenticate themselves.
These certificates form a trusted set of “root” store certificates deployed on end systems; if
the private key for any of these trusted root certificates is compromised, the attacker can
circumvent security guarantees of all TLS connections by a client.1 Currently, web browsers
and operating systems (OS) ship with dozens of root certificates in their root stores to enable
TLS communication with a wide range of servers. Due to the crucial importance of root
certificates, these platforms actively maintain their root stores to remove any certificates
from CAs that violate CA guidelines or get compromised.

Secure connection establishment A TLS “handshake” is the set of messages that es-
tablishes a secure session between two end hosts. The process is initiated by a client to
advertise its supported protocol versions, ciphersuites (i.e., cryptographic algorithms), and
extensions (i.e., other advanced features). In response, a TLS server decides the protocol
version and ciphersuite to use based on its compatibility. During the handshake, the client
and server can authenticate each other and compute cryptographic keys to be used for con-
fidentiality and integrity of the future communication. The authentication typically involves

1Except for applications that use strategies such as certificate pinning.

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

validating the received certificate chain using a root store. Any data sent after a successful
handshake is encrypted.2

2.2 TLS Security

Handshake vulnerabilities By 2020, major browsers had deprecated all TLS versions
below 1.2 due to serious security flaws [10]. Yet, some TLS clients voluntarily downgrade
connection security upon handshake failure to improve compatibility with older servers.
The POODLE (2014) [11] attack exploited the behavior of major web browsers and other
clients to fallback to SSL 3.0 (known to be insecure at the time) and highlighted the risks
of any fallback behavior. In general, the TLS interception class of attacks typically refer to
weaknesses in handshake validation that are exploited by on-path attackers. These attacks
are particularly severe as they allow secret eavesdropping of all TLS communication sent
between a client and server on a compromised connection.

Web vulnerabilities HTTP-by-default behavior in web browsers, and limited deploy-
ment of TLS results in severe security and privacy risks to users (e.g., [5]–[7]). Prior work
argues for TLS to be supported on every page of a website, and for web browsers to use
TLS-by-default, to mitigate these threats.

Mobile vulnerabilities Georgiev et al. [12] conducted one of the earliest studies about
TLS usage in non-browser software on multiple platforms including Android and iOS. They
found instances of insecure TLS implementations on both platforms. TLS usage on Android
was also studied by Fahl et al. [13] in 2012. Using static and dynamic analysis techniques,
they found 8% of apps studied to be vulnerable to interception attacks. On the other hand,
Orikogbo et al. [14] studied the validity of TLS certificate validation logic in iOS apps.
They found rare instances of implementations that would bypass all or some of the critical
validation steps (e.g., certificate expiration check).

Root stores can include expired, unknown, or obscure CA certificates (e.g., [15]–[17]),
which can expose clients to TLS interception attacks. An attacker with access to the private
key for a CA certificate in the trust store can use it to sign arbitrary certificates (for arbitrary
domains) and trick the client into accepting these malicious certificates as valid. Certificate
pinning is an alternate to trusting OS root stores, where mobile applications include a custom
certificate to be trusted (in source code). Pinning prevents attacks by limiting certificate
trust to a pre-determined set of certificates instead of trusting a certificate issued by any
CA certificate in the OS root store. Note that certificate pinning not only protects against
malicious actors, but also against investigators and auditors seeking to analyze the data
exchanged between devices and servers (e.g., to understand personal data exfiltration).

IoT vulnerabilities Alrawi et al.’s SoK [4] provides a broad security evaluation of IoT
devices. Their work covers 45 devices from four different dimensions; devices themselves
along with their cloud endpoints, communication channels and mobile apps. The authors
find that these devices typically rely on TLS for network security, but often contain trivial

2Assuming the NULL ciphersuite is not selected.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

flaws in the protocol implementation and deployment.

For a comprehensive and systemic review of TLS security issues and how the protocol has
evolved over time to deal with those challenges, please refer to [18].

Differential testing In order to systematically find bugs in certificate validation logic of
TLS implementations, a seminal differential testing approach was introduced by Brubaker
et al. [19]. The authors (i) generated a corpus of synthetic test certificates by randomly
combining and mutating parts of real certificates, and (ii) provided the corpus as input to
multiple TLS libraries to use them as cross-referencing oracles to find differences in imple-
mentations (and bugs). Large body of prior research extends this line of work with the aim to
improve the synthetic certificate generation process, including, but not limited to: Mucerts
[20] that uses code coverage guidance, Coveringcerts [21] that uses combinatorial methods
with theoretical guarantees, SymCerts [22] that adds symbolic execution, RFCcerts [23] that
leverages certificate rules from protocol specification documents, Transcerts [24] that relies
on coverage transfer graphs, NEZHA [25] that keeps track of behavioral asymmetries across
multiple programs, and DRLgencert [26] that uses deep reinforcement learning to perform
mutations on a certificate. Note that in contrast to these techniques that automatically
generate synthetic certificates, Barenghi et al. [27] work to first manually obtain a grammar
for TLS certificates, and then build a parser to find legitimate issues in certificates that are
missed by various implementations.

2.3 Network Measurement

TLS adoption There is a significant body of research on analyzing TLS usage from
different vantage points i.e., passive monitoring of university networks [28]–[30], server-side
connection logs [17], active Internet scans [31]–[33], browser telemetry data [34], and Android
usage statistics [35]. Overall, the results from prior work indicate a steady trend towards
ubiquitous use of TLS.

Root stores analysis Fadai et al. [36] investigated the historical data for Mozilla’s root
certificates. They evaluated the trust implications of root certificates from several platforms
in terms of the owner status (i.e., private entity or governmental organization) and country
of origin. Other works proposed techniques to restrict the set of root CAs trusted by users
based on the insights that (i) CAs commonly sign a handful of top-level domains [28], (ii)
some CAs have not signed any certificates used by the HTTPS servers [37], and (iii) unique
browsing history enables individualization of the trusted CAs set [38]. Some works have
also focused on the user-trusted certificates present in the wild and that do not belong to
audited root stores—Vallina-Rodriguez et al. [15] explored vendor and app-specific additions
to the official Android root store, and Durumeric et al. [17] explored the additions due to
middleboxes such as an antivirus software or a corporate proxy.

Pinninig adoption Razaghpanah et al. [35] found 150 apps in their dataset that im-
plemented some form of pinning (2% of apps analyzed). In 2015, Android 6.0 introduced
Network Security Configurations (NSCs) [39] that enable apps to customize certain network

CHAPTER 2. BACKGROUND AND RELATED WORK 8

security settings. Possemato et al. [40] studied Network Security Policies (a single line con-
figuration in Android Manifests, or NSC files) and found that 13.02% of 125k+ apps used
these policies; with only 0.62% (of the 13.02%) using pinning. Oltrogge et al. [41] studied
NSC adoption using static analysis and found that 7.43% of 1.3M apps used NSCs; with
only 0.67% (of the 7.43%) using pinning.

TLS fingerprinting TLS fingerprinting has been used frequently in the past to infer
client behaviors – from detecting malware [42] to the usage of censorship circumvention
tools [43] and client identification (e.g., [17], [29], [30], [35]).

Chapter 3

TLS Usage in Consumer IoT Devices

Consumer Internet-of-Things (IoT) devices such as voice assistants, smart TVs and video
doorbells are popular, with their prevalence projected to be 75 billion by 2025 [44]. Most IoT
devices rely on TLS to provide confidentiality, integrity and authenticity of their network
communications [4]. Numerous prior works have shown that TLS security properties can
be compromised due to development errors (e.g., [19]), insecure configurations (e.g., [12]),
and outdated clients (e.g., [45]). While TLS usage has been studied extensively in mobile
applications and web browsers (e.g., [41], [14], [34]), there is little insight into its effectiveness
in the IoT ecosystem (e.g., [4]).

More specifically, there exists a research gap in understanding whether TLS implementa-
tions in IoT devices: (i) establish connections using secure TLS versions and ciphersuites, (ii)
correctly perform certificate validation while using a generally trusted set of root certificates,
and (iii) adopt new features as the protocol evolves over time (e.g., modern ciphersuites).
There are several challenges that prevent the use of existing methodologies to study these
aspects of IoT devices. First, understanding TLS support on a significant number of IoT
devices requires blackbox testing techniques; this is because source code is generally un-
available and firmware analysis is not scalable. Second, most IoT devices provide limited
ways to trigger TLS traffic for measurement—the timing, destination, and contents of their
communication are all dependent on device functionality and interactions. Third, existing
vantage points offer limited opportunities to track device behavior over time (e.g., recent
work considers only manufacturer-level device tracking using ISP/IXP data [46]).

In this chapter, we address these challenges to study a large number of TLS-enabled con-
sumer IoT devices (with over 200 million units sold collectively). First, we shed light on the
security of TLS implementations and configurations in these devices using existing and novel
active measurement techniques that require only TLS traffic interception. Second, based on
the insight that devices generate significant network traffic when powered on, we automate
device reboots using smart plugs to trigger TLS activity for our experiments. And third, we
analyze ≈2 years of network traffic from these devices via uncontrolled experiments to study
how their TLS usage changes over time. Altogether, we conduct active experiments on 32
devices, and collect passive data from 40 devices, each generating TLS traffic for at least 6
months.

9

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 10

Our key objectives are to evaluate the security of TLS connections established by IoT
devices, how this changes over time, and whether they correctly validate certificates. More
specifically, we study how devices’ TLS implementations are configured with respect to
TLS versions and ciphersuites supported, and provide the first longitudinal analysis of how
these properties change over time, as the TLS protocol and attacks against it evolve. We
further check whether the devices properly validate certificates to protect against the TLS
interception attacks, extending prior work by including a more comprehensive set of invalid
certificates in our tests. We develop a novel active testing strategy to reveal the trusted
set of root certificates on a device. These certificates form the “trusted root” of all security
guarantees provided by the TLS protocol and auditing them is particularly important given
the recent rise in supply-chain attacks by powerful adversaries [15], [47]. While prior works
have studied root stores in open platforms (e.g., operating systems and browsers), to the
best of our knowledge we are the first to investigate the validity of root certificates used in
IoT devices.

3.1 Goals

Our goals are to answer three research questions (RQs):

RQ1: Do devices securely establish TLS connections? Securely establishing TLS
connections means that devices use secure TLS versions and ciphersuites. In this work, we
consider whether devices are resilient to in-network adversaries (e.g., a network provider)
that have the ability to capture and manipulate TLS traffic between an IoT device and the
destinations it contacts. We focus on device support for the latest, secure protocol versions,
modern ciphersuites, and negotiated TLS configurations between IoT clients and their desti-
nations. We use ≈2 years of passively collected longitudinal IoT traffic to determine whether
devices adopt new features and abandon deprecated ones.

RQ2: Do devices properly validate TLS certificates? In this work, we focus on
evaluating whether devices accept connections with invalid certificates, and understanding
whether their root stores contain deprecated and/or distrusted root certificates. Specifically,
we focus on validation of the server certificate chain, hostname and various X.509 extensions
specified in RFC 2818 [48] and RFC 5280 [49]. In addition, we evaluate the configured set
of trusted root certificates to determine whether devices protect against distrusted and/or
stale root certificates.

RQ3: What is the diversity of behaviors within and across devices? The
effectiveness of a single attack vector is limited to the set of devices that share the same
vulnerability. To understand the breadth of the impact of potential attacks, we investigate
how many devices exhibit the same TLS behavior and, potentially, the same security issues.
We further investigate whether individual devices exhibit different TLS behavior for different
connections—indicative of multiple TLS instances on the same device.

To answer these questions, instead of modeling IoT devices as monolithic implementations,
we treat them as complex devices that can integrate third-party components and even allow
users to install third-party software as in the case of Smart TV platforms. These cases

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 11

Figure 3.1: Mon(IoT)r lab at Northeastern University. The lab is designed to resemble a
smart home with consumer IoT devices.

can lead to additional risk of vulnerabilities due to the need to maintain the security of
these multiple TLS deployments and development errors, both at the OS level and across
third-party developers.

Assumptions For this study, we assume that when a device uses TLS, the corresponding
traffic must be safeguarded to provide authenticity, confidentiality and integrity. Note that
we cannot in general know whether the content of any specific TLS connection is sensitive
(e.g., contains personal data). When such connections are used to transmit sensitive content
such as users’ personal data or a manufacturer’s confidential machine-learning models, there
is a clear need to protect it against attackers. While some TLS endpoints may be public
services that exchange non-sensitive data, we cannot a priori distinguish such entities, and
thus treat all endpoints that use TLS as potentially sensitive.

3.2 Methodology

This section provides an overview of our methodology, analyses, and how they relate to the
research questions.

3.2.1 Testbed

IoT Devices We study 40 TLS-supporting IoT devices across 6 categories; Cameras,
Smart Hubs, Home Automation, TV, Audio and Other Appliances (Table 3.1). The testbed
is configured to represent a smart home with a wide range of consumer IoT devices connected
to the Internet (Figure 3.1). All devices are located in an isolated space designed to resemble

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 12

Table 3.1: List of the 40 TLS-supporting devices in our study. (*) denotes devices used
only in passive experiments.

Cameras (n = 7) Smart Hubs (n = 7) Home Automation (n = 7) TV (n = 5) Audio (n = 7) Appliances (n = 7)

Blink Camera*
Amazon Cloud-
cam*
Zmodo Doorbell
Yi Camera
D-Link Camera
Amcrest Camera
Ring Doorbell*

Blink Hub
Smartthings
Hub
Philips Hub
Wink Hub 2
Sengled Hub*
Switchbot Hub
Insteon Hub*

Smartlife Bulb
Smartlife Re-
mote
Meross
Dooropener
TP-Link Bulb
Nest Thermo-
stat
TP-Link Plug
Wemo Plug

Fire TV
Samsung TV*
LG TV
Roku TV
Apple TV

Google Home
Mini
Amazon Echo
Plus
Amazon Echo
Dot
Amazon Echo
Dot 3
Amazon Echo
Spot
Harman Invoke
Apple Home-
Pod

GE Microwave
Samsung
Washer*
Samsung Dryer
Samsung Fridge
Smarter iKettle
Behmor Brewer
LG Dish-
washer*

a studio apartment. To interact with devices that support companion apps, we installed and
used these apps on smartphones connected to the same network. Network traffic collection
is performed at a gateway that provides network access only to our IoT testbed.

We use a software/firmware update discipline that we assume to be typical of an IoT
home scenario. Specifically, devices that receive automatic updates are updated at whatever
cadence the manufacturer specifies. For devices that require manual intervention for updates,
we accepted the updates when explicitly asked by the companion apps of devices. Note that
we accept these updated in an ad-hoc manner, and as such, these devices are not regularly
updated. We decided to use this approach because (a) we expect many users to also use
these devices in a similar way, and (b) getting all devices to update at a regular interval
could not be automated.

Experimental Setup and Dataset Our study uses a combination of passive and active
experiments. The key difference between the two experiment types is that active experiments
involve the usage of mitmproxy [50] to intercept traffic while passive experiments do not.
Both experiments need some form of interaction with the IoT devices for generating network
activity.

In passive experiments we simply record the network traffic generated by devices. This
includes data while devices are not in use, and also from interactions with ≈40 consenting
study participants enrolled in our IRB-approved study. These participants are members of
our academic institution, and are directed simply to use these devices as they please. The
passive dataset covers ≈2 years of traffic from January 2018 to March 2020. Among the 40
devices in passive experiments, every device generated traffic for at least 6 months, while 32
devices did so for more than 12 months. Passive data allows us to observe the real-world
behavior of the devices (a) when they are connected to the network without user interactions,
and (b) when users interact with them.

In active experiments, we intercept the traffic from our devices by impersonating the server-
side of TLS connections. To induce the devices to generate TLS traffic for interception, we
leverage the observation that IoT devices generate significant traffic when powered on [51].
Thus we programmatically use TP-Link power plugs to turn devices off and back on again,

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 13

Table 3.2: Overview of the TLS interception attacks.

Attack Description

NoValidation Use a self-signed certificate to check whether a device performs any certifi-
cate validation.

WrongHostname Use an unexpired legitimate certificate for a domain under our control to
check whether a device performs hostname validation. We send the full
chain linking to a trusted root authority during handshake.

InvalidBasicConstraints Use certificate from the previous attack as a root CA to check whether a
device validates BasicConstraints extension. We send the full chain linking
to a trusted root authority during handshake.

causing them to boot and potentially establish TLS connections. All 32 devices in active
experiments generated at least one TLS connection. The bulk of our experiments were
performed in March 2021.

Some devices broke, lost manufacturer support or would lose WiFi connectivity until recon-
figured again. As a result, such devices did not generate traffic continuously throughout the
entirety of our passive experimentation period, and were omitted from the active experiments
(resulting in the discrepancy between number of devices in active vs passive experiments).

In total, we gathered ≈17M TLS connections (per device average: ≈422K, median: ≈138K
connections). Note that our active experiments comprise controlled, repeatable experiments
that are conducted without study participants present and represent a snapshot in time (at
least 3 minutes after a device reboot). Passive experiments are uncontrolled and they may
include participant interactions, thus they enable us to study longitudinal insights across a
variety of connections.

3.2.2 Instrumentation

We use the following instrumentation to gather data for analysis.

TLS handshake analysis (RQ1 and RQ3) To determine whether devices establish
secure TLS connections, we extract information about TLS versions and ciphers advertised
by clients and selected by servers. We further parse the ClientHellos to extract client finger-
prints, and use this information to explore the diversity of TLS implementations in the IoT
ecosystem.

Certificate Validation Analysis (RQ2) We investigate whether devices are suscep-
tible to several TLS interception attacks that an adversary can use to compromise TLS
connections (Table 3.2). We picked these attacks because they do not require significant
resources (e.g., compromising a root CA, or breaking a cipher using cryptanalysis). They
are related to proper certificate chain validation and have previously been found effective
against a wide variety of non-browser TLS clients [12], so we extend these to IoT devices.
We use mitmproxy [50] for performing these attacks.

Note that a potential limitation of our study is that attempts to test vulnerabilities (e.g.,

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 14

Table 3.3: Sources for obtaining historical data for CA root certificates trusted by various
platforms.

Platform
Total

versions
Earliest

version year
Comments

Ubuntu 9 2012 We install the ca-certificates package and fetch the /etc/ssl/certs/ca-
certificates.crt file from official Docker images.

Android 10 2010 We use version-tagged commits for either /platform /system/ca-
certificates or luni/src /main/files/cacerts [52], [53].

Mozilla 47 2013 We extract different file versions from commit history for NSS’s secu-
rity/nss/lib/ckfw/builtins/certdata.txt [54].

Microsoft 15 2017 We use the historical information published by Microsoft about its
trusted root store certificates [55].

using self-signed certificates) will lead to connection errors, and those in turn may cause
a device (or some of its functionality) to cease to work, thus suppressing further network
connections. To test the potential impact of this issue, we restart devices and repeat all
the above attacks with TrafficPassthrough where we do not intercept any connections that
previously failed when under attack [56]. Encouragingly, we find that TrafficPassthrough
experiments did not lead to finding any new certificate validation failures, even though they
produced ≈20.4% more connections (average, in terms of new DNS or TLS hostnames) from
these devices. We speculate that these additional connections might be based on success
responses from some earlier connections (e.g., a login request) and, as such, only appear in
TrafficPassthrough tests.

Root stores analysis (RQ2) We present a novel technique to detect if a Certificate
Authority (CA) root certificate is in the trusted root store of an IoT device. Our key insight
is that the TLS protocol specifies different steps for clients when validating a certificate
with an unknown issuer compared to a certificate with known issuer but invalid signature—
opening a side channel to infer the presence of trusted root certificates in a client’s root
store. In this work, we exploit this side channel using TLS Alert Messages.

We first use a self-signed root certificate with arbitrary Subject Name to intercept a TLS
connection originating from the device. The device should fail to establish the connection
if it is doing proper certificate validation because our CA certificate is not in its root store.
We then intercept the same TLS connection using a spoofed CA certificate, i.e., a self-signed
root certificate with its Subject Name, Issuer Name and Serial Number matching that of
a legitimate root certificate being tested. The client should reject this certificate due to a
signature validation error: while the subject name, issuer name, and serial number all match
a trusted root certificate, we do not have the root CA’s private key to generate a valid
signature for the leaf certificate in chain. Thus our interception attempt fails in both cases,
but the failure could either be due to the client not recognizing the arbitrary Subject Name
in its root store, or because it does recognize a Subject Name that is in its root store but the
leaf certificate has an invalid signature. If we are able to observe this difference in device
behavior, we can infer whether a given CA certificate is trusted by the device or not.

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 15

Table 3.4: Testing our technique for exploring root stores in various TLS libraries. Only
two were found to be amenable (shown in italics).

Library Response for
known CA with
invalid signature

Response for
unknown CA

MbedTLS
(v2.21.0)

Bad Certificate Unknown CA

OpenSSL
(v1.1.1i)

Decrypt Error Unknown CA

Oracle Java
(v1.8.0)

Certificate Unknown Certificate
Unknown

WolfSSL
(v4.1.0)

Bad Certificate Bad Certificate

GNU TLS
(v3.6.15)

No Alert No Alert

Secure
Transport

(macOS v11.3) No Alert No Alert

We found that the TLS specification provides a mechanism to observe this difference in
behavior: per RFC 5246 (TLS 1.2) or RFC 8446 (TLS 1.3), a TLS client may choose to
send a TLS Alert Message during a connection failure. More specifically, clients can choose
to send unknown ca alert to indicate that a trusted CA root certificate could not be found
when forming the chain and decrypt error alert to indicate for a signature check failure.
For this work, we consider a device amenable to our technique of root store exploration if it
sends different alerts based on the type of experiment run.

To realize this experiment, we use the approach from TLS interception attacks to boot
devices, intercept their TLS connections, and respond with self-signed certificates as de-
scribed previously. We then record any TLS Alert Messages that appear. It is crucial that
a connection from the same TLS instance is triggered from a device every time a root CA
is investigated. Otherwise, we cannot know if our exploration is targeted towards one root
store or multiple root stores on the same device. For our experiments, our expectation is
that devices will follow the same procedure every time they are rebooted.

To obtain a set of CA certificates to spoof, we gathered historical data for CA certificates
trusted by various platforms through the sources described in Table 3.3. We use this data
to make two distinct set of certificates:

1. Common CA certificates : we use the latest version of the root store for each platform
and extract currently unexpired certificates common to all of them.

2. Deprecated CA certificates : we start with the earliest version of the root store for each
platform, and extract all certificates removed from the successor version(s) of the store,
but that are currently unexpired. We exclude any certificate if it was once removed
but is still present in the latest version of the root store.

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 16

Figure 3.2: TLS version support for IoT devices. Devices often use multiple versions (rows
2-12), can encounter lack of server support (rows 2-8) and rarely adopt better TLS versions
over time (rows 7-10). 28 devices use TLS 1.2 for the vast majority of their advertised and
established connections, and are not shown in this figure.

Common CA certificates represent the ones trusted by all major (non-IoT) platforms, and
thus can be considered likely trustworthy. Deprecated CA certificates represent cases where
root certificates are retired before expiration, or in some cases explicitly distrusted (e.g., due
to noncompliance with CA guidelines), and thus their trustworthiness is (more) questionable.
Note that our approach cannot in general reveal all certificates in the root store; rather, it
can reveal only those included in our testing set. As such, our analysis may omit non-public
root, such as those in private PKIs.

We validated the efficacy of our approach in popular TLS libraries and present results in
Table 3.4. Among the 2/6 libraries that are amenable to this analysis, MbedTLS is generally
known to be deployed in IoT ecosystems [22]. As we show later in our results, we empirically
found that OpenSSL is used by multiple devices that are also amenable to this measurement
strategy.

3.3 Results

We now present the results to answer our research questions.

3.3.1 TLS Connection Security

In this section, we rely on more than two years of passively collected data to study TLS
protocol version and ciphersuites, and whether their support improves over time.

Protocol Version As explained earlier, the TLS version used in a connection is deter-
mined during the handshake and is based on the highest version supported by both client

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 17

Table 3.5: IoT devices that downgrade security upon connection failures (✓ indicates down-
grade).

Device
Failed

Handshake
Incomplete
Handshake

Behavior
Downgraded

/ Total Destinations

Amazon Echo
Dot

✗ ✓ Falls back to using SSL 3.0 7 / 9

Amazon Echo
Plus

✗ ✓ Falls back to using SSL 3.0 6 / 7

Amazon Echo
Spot

✗ ✓ Falls back to using SSL 3.0 11 / 15

Amazon Fire
TV

✗ ✓ Falls back to using SSL 3.0 13 / 21

Apple
Homepod

✗ ✓ Falls back to using TLS 1.0 7 / 9

Google Home
Mini

✗ ✓ Falls back to supporting a weaker ciphersuite and signature
algorithm (TLS RSA WITH 3DES EDE CBC SHA and

RSA PKCS1 SHA1)

5 / 5

Roku TV ✓ ✓ Falls back from offering 73 ciphersuites to just 1
(TLS RSA WITH RC4 128 SHA)

8 / 15

and server. Since versions prior to 1.2 are deprecated due to security concerns, we focus on
the prevalence of such connections in our dataset, and whether their use is due to lack of
client and/or server support for newer versions.

Our first observation is good news. A large majority of the devices (28/40) use TLS 1.2
exclusively and are thus not using deprecated versions. However, for other devices, we find
a mix of traffic that includes the use of deprecated TLS versions over time.

To visualize this phenomenon and understand how it impacts the security of established
connections, in Fig. 3.2 we visualize a heatmap of the fraction of connections for which
each TLS version is advertised via Client Hellos (left), and established via Server Hellos
(right) over a 2-year period. For each device (y-axis), we use three rows to represent the
TLS connections observed over 1.3 (top), 1.2 (middle) or older versions (bottom). Each cell
represents the fraction of TLS connections over each TLS version during a particular month
of our study (x-axis). Gray cells indicate months where a device did not generate any TLS
traffic. Note that Fig. 3.2 omits the 28 devices that established connections using only TLS
1.2. We make the following observations:

The vast majority of connections happen over TLS 1.2. Only the Wemo Plug advertises
an insecure TLS version throughout the entire measurement period for all its connections.

Devices tend to support newer protocol versions than the servers they connect to. We find
that 32 devices advertised support for TLS 1.2 in more than 95% of their connections every
month; however, only 24 established connections consistently with TLS 1.2. For example,
the LG Dishwasher, Samsung Dryer, Samsung Washer, Samsung Fridge devices advertise
TLS 1.2, and the Apple Home Pod and Apple TV devices advertise TLS 1.3, but all of them
establish connections using older protocol versions. The finding highlights that the security
of TLS connections from IoT devices in many cases is limited by servers rather than the
devices themselves.

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 18

Table 3.6: IoT devices that support older TLS versions.

Device TLS 1.0 Available? TLS 1.1 Available?

Zmodo Doorbell ✓ ✓

Wink Hub 2 ✓ ✓

Yi Camera ✓ ✓

Philips Hub ✓ ✓

Smarter Brewer ✓ ✓

TP-Link Bulb ✓ ✓

Roku TV ✓ ✓

Meross Dooropener ✓ ✓

LG TV ✓ ✓

Google Home Mini ✓ ✓

Amazon Fire TV ✓ ✓

Amazon Echo Spot ✓ ✓

Amazon Echo Plus ✓ ✓

Amazon Echo Dot ✓ ✓

Amcrest Camera ✓ ✓

Samsung Fridge ✗ ✓

Samsung Dryer ✗ ✓

Wemo Plug ✓ ✗

Devices rarely upgrade to newer protocol versions. The vast majority of devices supported
the same TLS versions during the two-year study. The exceptions are Apple TV and Google
Home Mini, which transitioned to using TLS 1.3 (5/2019), and the Blink Security Hub, which
transitioned to TLS 1.2 (7/2018), for the majority of its advertised connections. (TLS 1.3
was finalized by IETF in 8/2018.)

We do not have ground truth to indicate whether changes in advertised TLS versions
are due to TLS software upgrades on the device or due to connections established using a
different existing TLS instance on the same device. For the three cases above, we believe
they are likely software upgrades because the new protocol versions are used exclusively
after the transition. In contrast, the Insteon Hub appeared to downgrade its advertised and
established connections to older TLS versions for a brief period of time (7/2018–8/2019).
We manually inspected these cases and found that changes in fractions of connections using
older TLS versions were explained by a single set of destinations that were contacted more
or less frequently from one month to the next. As such, we do not believe these were due to
any TLS software changes. Note, however, that the transition to TLS 1.2 (9/2019) is more
likely due to an upgrade in protocol support because older TLS versions are not seen at all
after this date.

Devices that advertise multiple maximum TLS versions. We find that 20 devices advertise
support for more than one TLS version, with 15 of those advertising multiple maximum
versions for the same destinations. This was surprising, since a device with a more secure
configuration would advertise only the most recent TLS version as its maximum. There are
several potential explanations for this behavior. One explanation could be that different

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 19

Figure 3.3: IoT devices that advertise handshakes with insecure ciphersuites (lower is better).
Most devices do not deprecate these ciphersuites over time. 6 devices rarely advertise such
ciphersuites, and are not shown in this figure.

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 20

Figure 3.4: IoT devices that establish connections with strong ciphersuites (higher is better).
Most devices do not adopt these ciphersuites over time. 18 devices use such ciphersuites for
the vast majority of their established connections, and are not shown in this figure.

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 21

IoT device functionality (e.g., third-party software) uses the same TLS implementation but
different configurations. In this case, we hypothesize that connections to different parties
would consistently use different TLS configurations. To test this, we labeled each TLS
connection as first or third-party using an approach inspired by Ren et al. [51]. We found
no patterns that indicate bias toward one TLS version depending on the destination type
contacted, and thus we found no evidence to support this hypothesis. Another explanation
is that each device contains multiple TLS instances and different software components of
a device use them independently. While we do not have any ground truth to confirm it,
the observed behavior is consistent with this explanation. We explore this behavior and its
implications further in §3.3.3.

Connection security under attacks The results above focus on connection security
observed passively, and only shed light on the maximum advertised protocol version from
devices. To better understand the susceptibility of these devices to even weaker security
in the face of an active on-path attacker, we conducted active experiments that attempt
to force devices to downgrade connection security through connection failures, or negotiate
connections with older TLS versions by using them in ServerHellos.

We ran experiments using two types of TLS connection failures; IncompleteHandshake
where we do not reply to a ClientHello with ServerHello, and FailedHandshake where we
use a self-signed certificate to cause an unsuccessful handshake. Table 3.5 lists the 7 devices
that downgrade security upon connection failures, the types of handshakes errors that lead
to downgrades, how security was downgraded, and how many destinations were susceptible.
The most likely reason for such behavior is that clients intentionally want to maximize
compatibility with old servers. Interestingly, the majority of—but not all—destinations
(i.e., unique domains identified via SNI or DNS) for a device are affected by downgrades.

The exception is the Google Home Mini, which is susceptible to downgrades on all its
connections. The most significant downgrade that we observed was the fallback to SSL 3.0
(which is vulnerable to the POODLE attack) in 4 devices, all from the Amazon family.

Next, we investigate which devices support TLS versions older than 1.2 and will establish
connections using those older versions, if triggered to do so. Table 3.6 lists the 19 devices that
support TLS versions older than 1.2. We note that despite the large number of these devices,
TLS 1.2 was the most common protocol seen in established connections from passive data.
As such, the finding highlights that completely protecting against active attackers requires
devices to not only advertise TLS 1.2, but also completely disable support for older TLS
versions.

Ciphersuites Similar to the protocol version, the selection of a connection’s ciphersuite
also happens during a connection handshake and depends on client and server compatibility.
For a connection to follow best security practices, strong ciphersuites that offer forward-
secrecy (DHE, ECDHE) should be chosen, while those that are either insecure (RC4, DES,
3DES, EXPORT) or do not offer encryption or authentication (ANON, NULL) must be
avoided.

To study the prevalence and client/server support for these ciphersuites, we plot heatmaps
for the advertised and established ciphersuites over time. Each row represents a device,

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 22

where each cell is the fraction of connections that are insecure (Fig. 3.3) or strong (Fig. 3.4)
for a given month of the study. As before, gray cells indicate months where there was no
TLS traffic from the device. We make the following observations:

Devices never support (ANON, NULL) ciphersuites. We did not observe any TLS connec-
tion advertised or established using these.

Devices support weaker ciphersuites than the servers they talk to. 34 devices advertised
insecure ciphersuites (Fig. 3.3) but only 2 ever established connections using those (Wink
Hub 2 and LG TV). In contrast to support for TLS versions, the devices in our study
generally offered to use weaker security than what servers chose to establish.

Devices tend to have better support for perfect forward secrecy than the servers they connect
to. 33 devices advertise support for forward secrecy, but a large majority of devices (22)
establish most of their connections without it (Fig. 3.4).

Devices rarely improve usage of ciphersuites over time. Only 2 devices (Blink Security
Hub – 5/2019, SmartThings Hub – 3/2020) stopped advertising/using weak ciphers during
our two-year study (Fig. 3.3), while 5 (Apple HomePod – 1/2020, Ring Doorbell – 4/2018,
Apple TV – 3/2019, Wink Hub & Blink Security Hub – 10/2019) adopted perfect forward
secrecy (Fig. 3.4). Surprisingly, Apple TV (10/2018) appeared to increase support for weak
ciphers over time.

Devices show varying support for ciphersuites during multiple months. Many devices sup-
port insecure ciphersuites in a fraction of their connections as opposed to all or none. Similar
to the case with protocol version, the varying support suggests the presence of multiple TLS
instances in a device.

Comparison with prior work We now compare TLS versions seen from the IoT devices
in our testbeds with those observed in prior work. Note that prior work [29], [30] looked at
all traffic from a network provider, not only IoT devices. Specifically, when looking at North
American vantage points in November, 2019, a recent study [29] found that ≈60% of client
connections support TLS 1.3, while our study found only ≈17% of IoT device connections
support TLS 1.3. In April, 2018, Kotzias et al. [30] found that ≈10% connections advertise
RC4 ciphersuite support while we find ≈60% of connections do. Relative to other sources
of Internet traffic such as browsers, IoT devices and their online infrastructure are slow to
adopt modern protocol features and to deprecate insecure ones.

Takeaways Our longitudinal study revealed good and bad news about TLS usage in IoT
devices. On the positive side, the IoT devices in our study often rely on TLS1.2 or above, do
not support (NULL, ANON) ciphersuites and often support better protocol versions than
the servers they connect to. On the negative side, many of the devices in our study do
not use the latest protocol version, still support some weak ciphersuites, and tend to not
upgrade to modern protocol features over time. Our findings suggest that although most
IoT devices establish reasonably secure TLS connections, device manufacturers can improve
when it comes to maintaining updated TLS libraries and configurations over time. This will
help to reduce their exposure to attacks over time.

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 23

Table 3.7: IoT devices vulnerable to TLS interception attacks. (✓ indicates vulnerability).

Device
No-

Validation
InvalidBasic-
Constraints

Wrong-
Hostname

Vulnerable/Total
Destinations

Zmodo Doorbell ✓ ✓ ✓ 6 / 6

Amcrest Camera ✓ ✓ ✓ 2 / 2

Smarter Brewer ✓ ✓ ✓ 1 / 1

Yi Camera ✓ ✓ ✓ 1 / 1

Wink Hub 2 ✓ ✓ ✓ 1 / 2

LG TV ✓ ✓ ✓ 1 / 2

Smartthings Hub ✓ ✓ ✓ 1 / 3

Amazon Echo Plus ✗ ✗ ✓ 1 / 8

Amazon Echo Dot ✗ ✗ ✓ 1 / 9

Amazon Echo Spot ✗ ✗ ✓ 1 / 17

Amazon Fire TV ✗ ✗ ✓ 1 / 21

3.3.2 Certificate Validation

In this section, we use active experiments to evaluate how well IoT devices validate TLS
certificates for the connections they establish. It is important to note that failure to properly
validate certificates makes devices susceptible to interception attacks, where the attacker can
recover the plaintext content of encrypted connections. To understand the correctness of
certificate validation, we test three aspects. First, we identify whether devices are susceptible
to interception attacks via the techniques presented in Table 3.2. Second, we determine
whether devices conduct certificate revocation checking. Last, we evaluate our novel probing
strategy to reveal the set of trusted root CAs and determine whether devices continue to trust
unexpired root certificates that have been deprecated, particularly focusing on distrusted
certificates.

Invalid certificates We begin by understanding whether devices perform validation cor-
rectly when presented with invalid certificates (Table 3.7). In summary, seven devices do not
perform any certificate validation and are thus vulnerable to traffic interception. Four other
devices (all from the Amazon family) do not check for correct Common Name in certificates
and we were thus able to decrypt their TLS traffic using a free certificate obtained from
ZeroSSL for a domain under our control. Interestingly, the Yi Camera disables certification
validation completely upon 3 consecutive failed connections.

Through manual inspection of successfully intercepted TLS connections, we found that
7/11 devices transmitted potentially sensitive data to first-party destinations (e.g., “en-
crypt key” for Zmodo Doorbell, “command server” for Amcrest Camera, “deviceSecret” for
LG TV and “bearer” authentication tokens for Amazon devices). This provides strong
evidence that lack of certificate validation can have implications for user and device securi-
ty/privacy.

Interestingly, we also found that 7/11 vulnerable devices (Table 3.7, column 5) initiated
TLS connections to other first or third-party destinations that were not vulnerable (likely

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 24

Table 3.8: Exploring the root stores of 8 IoT devices. Each cell denotes the number of root
certificates present in an IoT device over the number of certificates whose inclusion could be
successfully checked.

Device
Commonly-trusted certs

(total = 122)
Deprecated certs

(total = 87)

Google Home Mini 100% 6%

Amazon Echo Plus 98% 18%

Amazon Echo Dot 98% 19%

Amazon Echo Dot 3 90% 27%

Wink Hub 2 92% 38%

Roku TV 91% 41%

LG TV 93% 59%

Harman Invoke 82% 59%

due to the presence of multiple TLS instances—we explore this behavior and its implications
further in §3.3.3).

Revocation Checking An important aspect of establishing secure connections is for
clients to determine whether the server certificate for a connection has been revoked. To
test whether devices perform such checks, we use passive data to look for communication
with standard revocation endpoints (CRLs, OSCP servers), requests for OCSP staples in
ClientHellos and presence of Must Staple extension in certificates. We find that a large
majority of devices (28) do not ever conduct certificate revocation checks, and thus only 12
devices ever attempt to check for revocation for any of the certificates received throughout
the measurement period. Of those devices, 11 support OCSP Stapling but never encounter a
certificate with a Must Staple extension. We conclude that the IoT ecosystem provides only
limited support for revocation checking, similar to what has been observed by prior work in
desktop and mobile browsers [57].

Root Stores When devices continue to trust deprecated or distrusted (and unexpired)
CA certificates, they can become susceptible to interception attacks against all destinations
if an attacker obtains the corresponding secret key. We now investigate the extent to which
IoT devices are vulnerable to this issue.

We use the methodology introduced in §3.2.1 to detect the inclusion of deprecated-yet-
unexpired root store CAs in IoT devices. We excluded appliances not suitable for repeated
reboots (i.e., Washer, Dryer, Thermostat, Fridge) and the devices that did not validate
certificates in any of their TLS connections. For 8/24 remaining devices in the testbed, our
methodology successfully triggered different Alert Messages to enable root stores exploration.

A summary of the results is provided in Table 3.8. In some cases, our experiments were
inconclusive in determining the inclusion of a particular certificate (e.g., if the device did
not generate any traffic). We exclude such cases and present the total number of certificate
inclusions divided by the total number of successful experiments for each device in the table.
We find the majority of unexpired certificates common to all platforms to be present in

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 25

Figure 3.5: For deprecated CA root certificates still present in IoT devices, we track their
year of removal from major platforms.

all devices probed (second column in the table). This is good news, as it suggests that
IoT devices, web browsers, and OSes trust a similar set of (presumably trustworthy) CA
certificates.

Interestingly, however, all devices also contain at least one deprecated-yet-unexpired root
certificate, i.e., that has already been removed from one or more major platforms. With the
exception of the Google Home Mini, the IoT devices we tested contain significant fractions
(if not a majority) of root certificates that were deprecated from other platforms.

To understand how long such deprecated-yet-unexpired root certificates remain in device
root stores, we plot the staleness of each root certificate in terms of the year it was removed
from one of the four reference platforms in Figure 3.5. (If a certificate was removed from
multiple stores, we use the latest year of removal.) Devices with large numbers of certificates
that were removed years ago are either not updating their root stores or not interested in
deprecating certificates.

We find that the majority of observed stale root certificates were deprecated in the years
2018 and 2019, likely biased by the fact that the devices were manufactured at or shortly
before those years. Surprisingly, we find that one device (LG TV) contains unexpired root
CAs that were deprecated as early as 2013. We note that the devices in our testbed were
able to receive regular updates during our study. More specifically, LG TV was last updated
in July 2019 and Roku TV in September 2020, while the bulk of our experiments were
performed in 2021. Other devices such as voice assistants from Google and Amazon receive
updates automatically as long as they are connected to the Internet. This suggests that
some manufacturers are not updating root stores at the same cadence (if at all) as other
software updates.

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 26

A root certificate that is deprecated is not necessarily untrusted, as some may be removed
for “administrative” reasons such as regular key rotations (e.g., [58]). However, the TurkTrust
(2013) and Certinomis (2019) CAs were explicitly distrusted by Mozilla while CNNIC (2015)
and WoSign (2016) are in the Google blocklist due to a failure to comply with CA guidelines
(e.g., TurkTrust was responsible for an unauthorized certificate for google.com) [59]–[61].
Arguably these root certificates should not be trusted by any devices. Surprisingly, we found
that one or more of these CAs explicitly distrusted by various platforms were still trusted by
all devices. The fact that these root certificates remain trusted by devices can open them
to arbitrary interception attacks if the private key for those certificates were shared with
adversaries (WoSign incident [62]).

We note that these IoT devices tend to contact a small set of destinations, but nonethe-
less contain root stores used by web browsers/OSes that are expected to contact arbitrary
destinations. An important question is whether these devices all need to use such large root
stores, or instead some of the devices can reduce their trusted set of certificates to cover only
the destinations that are required for the device.

Takeaways 28 IoT devices show some form of certificate validation limitations. Some
devices skip certificate validation altogether and most do not bother to check for revoked
certificates. All of the affected TLS connections were contacting first-party destinations. We
conclude that even popular IoT devices from major manufacturers exhibit poor TLS valida-
tion for at least some of their connections. Further, all of the devices that we could success-
fully probe for root certificates contained at least one that was deprecated and distrusted,
despite the fact that the devices themselves install regular updates. These deprecated CAs
root certificates—particularly ones that are distrusted—can be perceived as the weakest link
in TLS security for IoT devices.

3.3.3 Diversity of TLS Behavior

In this section, we explore the diversity of TLS behaviors observed for individual devices
and across devices. The goal of this analysis is to shed light on how IoT devices use shared
or different TLS implementations and configurations, and the potential ramifications on
security.

Our primary investigative tool is TLS fingerprinting ; namely, we generate TLS fingerprints
for 32 devices and compare them to a publicly available database of 1,684 fingerprints that
covers a wide variety of sources such as different browsers, multiple versions of TLS libraries,
and malware samples [30]. Each fingerprint is labeled with the application that generated it
(e.g., OpenSSL, curl, android-sdk). We generate fingerprints for the TLS connections from
our devices in the same way as done during the database compilation. Since devices can
update their libraries and that may affect the corresponding fingerprints, here we only study
TLS traffic from active experiments that represent a snapshot in time.

Devices with more than one TLS fingerprint. For 18/32 IoT devices in our exper-
iments, we found only a single TLS fingerprint per device, likely due to the use of a single
TLS instance. This can simplify TLS security management by having only one instance
to maintain. However, we found that 14/32 devices had connections with more than one

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 27

Figure 3.6: IoT devices that likely share TLS libraries with other devices and applications.

fingerprint, indicating the presence of multiple instances. This can help explain the mixed
support for TLS connection security and the presence of TLS interception vulnerabilities in
some (but not all) connections from a device.

While we do not know why there are multiple TLS instances on a single device (because
we lack access to firmware for these devices), one conjecture is that these devices may
contain different first- and third-party components, each using different TLS instances. These
components can come from a variety of sources such as user-installed software (e.g., app
stores) or the usage of multiple frameworks during software development (e.g., Golang, Java,
and Python come pre-bundled with different TLS instances). If true, such behavior can
make it harder to maintain TLS security over time, as both device manufacturers and other
developers need to secure and maintain all of these instances.

TLS fingerprints shared across devices. We find that 19 devices share at least one
TLS fingerprint with other devices and/or applications (e.g., OpenSSL). This is likely because
multiple devices share the same (and in many cases, open source) TLS library.

To better understand the nature of shared TLS instances, we produced a graph of devices
and applications with the same fingerprints. There are three types of nodes in the graph:
devices (from our study) and applications (from Kotzias et al.[30]) that generate TLS fin-
gerprints, and the set of unique fingerprints that are shared among them. Edges between a
device/application and fingerprint indicate that we observed a device or application using
that fingerprint. Figure 3.6 visualizes this graph. In the figure, the thicker edges correspond
to the most-used fingerprint (and likely, the most-used TLS instance) for each device. Note
that the graph includes an edge only if the TLS fingerprint it connects to is shared with at
least one other node, i.e., all non-shared fingerprints and edges are removed from the figure to

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 28

improve readability. Dashed edges represent a fingerprint shared with a labeled application
from Kotzias et al.[30], and thus they do not represent observed traffic in our study.

Our first observation is that devices and applications from the same manufacturer share
fingerprints—this can be observed with labeled clusters (e.g., Amazon, Microsoft, and Ap-
ple). It is not surprising that these devices are likely using the same TLS instances, but
it nonetheless could be good news for maintaining security because it indicates that the
manufacturer likely needs to maintain one set of TLS instances across devices. These shared
instances also suggest that many of our findings apply to other devices belonging to the same
manufacturers that are not in our testbed.

Our next observation is about devices that share fingerprints with applications in the
fingerprint database. For example, the dominant fingerprint from Amazon Fire TV is the
same as one from android-sdk, and we verified that the device runs a fork of Android OS
[63]. Similarly, six devices exhibit the same TLS fingerprints as the OpenSSL library, likely
indicating that OpenSSL is used on those devices. This helps to explain why our technique
for root stores exploration worked for Invoke, LG TV, and Wink Hub 2 : despite being
produced by different manufacturers, they all share fingerprints with OpenSSL—one of the
two libraries we found amenable to the root stores exploration technique.

While we pointed out above that shared TLS instances can be good in the sense that they
are easier to maintain, sharing can also be a double-edged sword. Specifically, a security
vulnerability in one TLS instances can immediately impact large numbers of devices. For
example, in the TLS certificate validation analysis, we found that Amazon devices fall back
to TLS 1.0 during a downgrade attack. The TLS fingerprinting analysis shows that this is
likely because they share the same vulnerable implementation. (Interestingly, the Echo Dot
3 is the only Amazon device in our testbed not susceptible to the downgrade attack, and
its fingerprints have smaller overlap with those from other Amazon devices.) Importantly,
our observations hint at a way for an attacker to scale attacks by identifying and exploiting
vulnerable TLS implementations that are shared among multiple devices.

Takeaways IoT devices show similarity of TLS fingerprints with (i) other devices from
the same manufacturer (e.g., all Amazon devices), and (ii) various TLS clients (e.g., LG TV
and Wink Hub 2 with OpenSSL)—suggesting that our findings apply to many more devices
not tested in our experiments, and that security vulnerabilities found in one instance can
affect large numbers of devices. We also found that multiple TLS instances are deployed in
the same device in many cases, potentially making it difficult to maintain TLS security over
time.

3.4 Discussion

Recommendations Client support for TLS security has been an underexplored area in
recent research. Our findings, however, paint a complex picture of connection security and
certificate validation in connections from IoT devices. For instance, some devices support the
latest secure TLS features but still negotiate weak connections due to lack of server support.
Similarly, some devices fail to validate certificates, but only for some connections. Device

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 29

root stores are infrequently updated (if at all), and several devices likely include multiple
TLS instances.

The user risks due to insecure/incorrect TLS implementations in their IoT devices are
similar to the risks for any other systems using TLS, such as web browsers and other apps.
For example, MITM attacks may be carried out not only by any on-path attackers (e.g., a
malicious router), but by other devices on the same user network as well, such as a malicious
IoT device using ARP spoofing. If the attack is successful, it can expose potentially sensitive
user data, such as microphone data from a smart speaker or login credentials.

To mitigate this, our key recommendation to consumer IoT device manufacturers is to
audit, upgrade and maintain their devices’ TLS instances in a consistent and uniform way
that safeguards all of their network traffic. One way to do this is to provide TLS as an
operating system service (i.e., POSIX socket call) as proposed by O’Neill et al. [64]. Multiple
components within a device, and multiple devices in the IoT ecosystem can then use the
service to enable TLS in a consistent way. In a similar vein, we encourage industry groups
like the IoxT alliance [65] to incorporate TLS security standards into their guidelines for
manufacturers to follow, as well as verification tests. In fact, the IoxT alliance can also join
the CA/Browser Forum consortium [66] to adopt the same standards as web browsers when
it comes to trust in root certificates.

IoT devices can also rely on certificate pinning, a technique to mandate the use of particular
certificates in the chain sent by a server, to mitigate some of the vulnerabilities found in our
study. More specifically, the interception attacks we presented (Table 3.7) could have been
prevented with the proper use of certificate pinning. But it is important to highlight that
certificate pinning is not a panacea—pinning can help only in cases of compromised root
stores if the leaf certificate is pinned (rather than the root). Further, certificate validation
checks are necessary even if pinning is implemented. Otherwise, devices might appear secure
but will remain susceptible to sophisticated MITM attacks (e.g., [67]).

An internal or third-party auditing service can also help IoT vendors keep their TLS
instances up-to-date with the evolving security recommendations. IoT devices can be con-
figured to create TLS connections to the auditing service at regular intervals (e.g., once every
reboot). The service can then audit the security of the connections (e.g., ciphersuites offered
by the device during handshake). As new attacks are discovered, the service can contact
manufacturers to alert them about new vulnerabilities and mitigations.

Another possible mitigation strategy that IoT users can use is to interpose a trusted
network component between their IoT devices and the Internet, similar to the one proposed
by Hesselman et al. [67], to verify that TLS connections are being securely established.
If such verification fails, the component pauses the connection and reports the issue to the
user, which is left with the choice whether to allow the insecure TLS connection or not, as
it happens for web browsers.

Limitations Our study had several limitations. First, we chose a limited number of de-
vices to make the scope of our experiments practical. As such, our results are biased by the
selection of (a) popular consumer devices, and (b) multiple devices from the same manu-
facturer. Second, our choice of TLS interception attacks reflected the ones that are easily

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 30

exploitable by an in-network adversary. Other sophisticated attacks that use cryptanalysis
on a sufficiently large amount of network traffic (e.g., POODLE, SWEET32) are difficult to
mount (e.g., need JavaScript injection to repeatedly trigger requests) but could nonetheless
compromise TLS security in some IoT devices. Third, the coverage of our analyses could
be improved by (i) relying on techniques from other works to automate device interactions
(e.g., using smartphones [68], reverse-engineering exposed APIs [69]), and (ii) inspecting
source-code when possible (e.g., firmware extraction from memory, rooting Android-based
devices, crawling third-party marketplaces).

Unfortunately, all these techniques require device-specific efforts and do not generally scale
well to other devices. Finally, our technique to explore root stores does not generalize for all
devices. One reason is that some implementations choose to not send any TLS alerts over
connection failures. Moreover, unlike TLS 1.2, which mandated the usage of “appropriate”
alerts on encountering fatal errors, TLS 1.3 made it optional. This motivates the need to
search for better techniques to exploit the side-channel and explore root stores in more IoT
devices.

Responsible disclosure We contacted manufacturers of the 11 IoT devices to responsibly
disclose our successful interception attacks (Table 3.7). Unlike other devices that showed
weaknesses due to stale root stores or compatibility with older protocol versions and weaker
ciphersuites, these devices had vulnerabilities severe enough that we were able to actively
exploit them and extract decrypted TLS communications from their first-party connections.

Ethical considerations This study involved human subjects that participated after com-
pleting informed consent materials that are part of our IRB-approved study. No personal or
sensitive data about individuals is collected as part of this study. The active experiments
exploited vulnerabilities only for the devices in our lab, and we did not use any information
gleaned from these experiments to attack other devices or cloud services.

3.5 Conclusion

Our work fills an important knowledge gap in our understanding of TLS behavior from
consumer IoT devices using more than two years passive measurements along with active
experiments to reveal TLS vulnerabilities. We find a wide range of security-related TLS
behaviors ranging from good (a large majority of tested devices use TLS 1.2 or higher), to bad
(more than half of the devices advertise deprecated TLS versions or insecure ciphersuites in
a significant fraction of their connections), and critically flawed (11 devices are vulnerable to
TLS interception attacks because they do not properly validate server certificates). Further,
we find that devices are slow to adopt new TLS versions and to secure the set of supported
ciphersuites, and they also rarely remove deprecated and distrusted CA certificates from
their root stores.

Finally, we used TLS fingerprinting to identify cases where individual devices use multiple
distinct TLS instances, and those where different devices use the same TLS instances—each
with implications for security, e.g., shared vulnerabilities that can facilitate attack scaling.
We conclude that TLS clients in IoT devices have much room for improvement, and we

CHAPTER 3. TLS USAGE IN CONSUMER IOT DEVICES 31

recommend that manufacturers adopt uniformly secure TLS instances and industry stan-
dards [65], and conduct regular auditing and updating to ensure their devices’ connections
remain secure.

To ensure reproducibility and enable new research, we have made all of our longitudi-
nal TLS handshake data, controlled experimentation data and analysis software publicly
available at: https://github.com/NEU-SNS/IoTLS.

https://github.com/NEU-SNS/iotls

Chapter 4

Web Content Availability and
Consistency over HTTP/S

The importance and ease of deploying HTTPS websites has increased dramatically over
recent years. Recent studies of HTTPS adoption have found rapidly increasing adoption,
leading some to speculate that most major websites will soon be able to redirect all HTTP
requests to HTTPS [70]. Indeed, some client-side tools even go so far as to force all web
requests to be made via HTTPS [71].

However, to our knowledge, all previous work measuring the deployment of HTTPS [70],
[72]–[75] makes two basic but fundamental assumptions: (1) They assess server-side HTTPS
support by looking at a single page: the domain’s landing page (also known as its root
document, “/”), and (2) They assume that any resource that is available over both HTTP
and HTTPS has the same content (in the absence of an attack, of course)—that is, that the
only difference between http://URI and https://URI is that the latter is served over TLS.

Unfortunately, neither of these assumptions has been empirically evaluated. This is impor-
tant because, if they do not hold, they threaten our understanding of how HTTPS is truly
deployed. For example, the fact that a landing page is (or is not) secure might not neces-
sarily indicate the security of the site writ large. Moreover, if there are content differences
between HTTP and HTTPS, then merely defaulting to the more secure variant—as many
papers and tools have suggested—risks unexpected side-effects in usability.

In this chapter, we empirically show that this conventional wisdom does not universally hold
(Fig. 4.1). We identify inconsistencies between HTTP and HTTPS requests to the same
URI, in terms of content unavailability over one protocol and content differences between
them. Rather than restrict our study to landing pages, we conduct a deep crawl (up to 250
pages) of each of the Alexa top 100k sites, and for a 10k sample of the remaining 900k sites
on the Alexa top 1M list [76]. We then analyze the retrieved pages to identify substantial
content inconsistencies between HTTP and HTTPS versions of the same page, using a novel
combination of state-of-the-art heuristics.

32

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 33

Figure 4.1: Examples of webpages with different content using HTTP vs HTTPS.

Alexa	top	sites
(110,000)

HTTPS-supporting
(68,369)

250	per	site
(15,383,025)

									
(30,766,050)

																	
(50,000)

100	sample	sites
(25,000)

Initiate Crawl	Internal
Links Cross-validate	Crawl	Pages		

over	HTTP/S
Analyze

Inconsistencies

Unavailability
+	

Content-Differences

Figure 4.2: Summary of our pipeline. We use a custom crawler for the full crawl, but rely
on a real browser to detect any under/overestimation of inconsistencies.

4.1 Methodology

This section describes our measurement methods for crawling websites and identifying in-
consistencies.

4.1.1 HTTP/S Inconsistencies

We focus our study on websites that support both HTTP and HTTPS on the landing page.
For this set of sites, we measure whether there are different results when accessing the
same resource over HTTP and HTTPS. We categorize such cases of inconsistencies between
protocols as follows:

Content unavailability This occurs when a resource is successfully retrieved via HTTP,
but not HTTPS (i.e., HTTP status code >= 400,1 or an error2).

Content difference This occurs when a resource is available over both HTTP and HTTPS,
but the content retrieved differs significantly (as defined in §4.1.3).

4.1.2 Crawling Overview

We limit our analysis to differences in HTML content served by a website, which we refer
to as pages, and do not consider embedded resources (e.g., CSS and Javascript files). When
crawling a website, we conduct a depth-first search of all links to other webpages with the

1In Section 4.2, we show how some websites rely only on splash pages to report a failure, instead of also
returning an error status codes.

2Except for timeout or connection-reset errors.

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 34

same second-level (TLD+1) domain—which we call internal links)—starting at the landing
page for the site.

The websites we crawled are a subset of the Alexa global top 1 M domains. We chose
this list because it represents sites visited by users via web browsers [77]. Our analysis
covers all of the top 100K most popular domains. We supplement this set with a randomly
selected 10K sample of the 900K least popular domains, since rankings beyond 100K are not
statistically meaningful3.

For each domain, we crawled at most 250 internal links to limit the load on websites
induced by our crawls while still covering significant fractions of site content. We could not
identify an efficient way to inform this limit empirically, and picked this number to keep the
crawl duration at an acceptable length. Note that we consider only sites where the landing
page is accessible using HTTPS (and apply the same restriction to subdomains of a site).

To conduct the crawl, we developed a (i) Python-based crawler using the Requests [79],
BeautifulSoup [80] and HTML5Lib [81] libraries, and a (ii) Chromium-based crawler using
the Chrome DevTools Protocol. The former implementation does not attempt to render a
page by executing JavaScript and/or fetching third-party resources, and is thus considerably
faster, enabling us to crawl more pages in a limited set of time; we use it for finding the
inconsistencies across all websites and rely on a real browser only for cross-validating our
results. The crawler visited each page using both HTTP and HTTPS on their default
ports (unless otherwise specified in an internal link, e.g., via a port number in the URL). A
summary of the pipeline is presented in Fig. 4.2.

Identifying internal links To identify internal links for a site, we first access the landing
page of each website4 at the URL http://www.<website-domain-name>; for websites that
include a subdomain, we do not add the “www.” prefix. We parse the fetched webpage
and retrieve all internal links (i.e., URLs from anchor tags in the page). We prune this set
of internal links to include only URLs that respect the robots.txt file (if one exists). We
also filter out URLs from subdomains according to the subdomain’s robots.txt file. Of the
110K sites in our original list, 4,448 were filtered out due to robots.txt entries.

If the number of internal links retrieved from the landing page is less than the maximum
number of pages per site in our crawl (250), we recursively crawl the website by following
the internal links to find more URLs. We repeat this process until we have 250 URLs or we
fail to find new links. Fig. 4.3a shows the number of pages crawled per site, with the vast
majority of sites (86%) hitting the limit of 250 pages and 92% of sites yielding 50 or more
pages.

Ethical considerations Our crawler followed the “Good Internet Citizenship” guidelines
proposed by Durumeric et al. [72]. We used a custom user-agent string with a URL pointing
to our project webpage with details on the research effort and our contact information. We
honored all robots.txt directives, carefully spread the crawl load over time, and minimized
the number of crawls performed. To date, we have received only one opt-out request from a

3Alexa states that they “do not receive enough data from [their] sources to make rankings beyond 100,000
statistically meaningful” [78].

4The Alexa list only provides the domain name for each website, and not the complete URL.

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 35

0 50 100 150 200 250
Number of internal links

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Number of internal links per
website that were crawled.

0.0 0.2 0.4 0.6 0.8 1.0
Visible-text distance

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) CDF of visible-text dis-
tances for all byte-wise non-
identical pages.

10k 20k 30k 40k 50k 60k 70k 80k 90k
100k

100k+
Alexa rank

0

1k

2k

3k

4k

Nu
m

be
r o

f s
ite

s HTTPS unavailable
Robots.txt restriction
Miscellaneous

(c) Number of sites excluded for
different reasons from the crawl.

Figure 4.3: Overview of crawling data.

website administrator, which we promptly honored.

4.1.3 Identifying Inconsistencies

We analyze the crawled pages for inconsistencies as follows.

Identifying unavailability Despite being conservative in the rate at which we crawl web
pages, it is still possible that some servers may block our requests. For example, they may
blacklist the IP address of the machine running the crawler, and not indicate this using the
standard “429 – Too Many Requests” response status code. Additionally, we may encounter
transient 5xx error codes. Under such circumstances, our analysis might misinterpret the
temporary blocking as content unavailability (i.e., a false positive).

To mitigate such false positives, one day after the initial crawl we conduct a follow-up crawl
of all detected cases of content unavailability. The initial crawl visited each consecutive page
after the previous one finished loading, but for this smaller crawl, we use a large (20 seconds)
delay between visiting consecutive pages. This follow-up crawl is designed not only to avoid
rate-limiting, but also changes the order of fetches from HTTP-first to HTTPS-first to detect
differences in website behavior that are dependent on order of HTTP/S access.

Our approach is susceptible to false negatives. Namely, if a server permanently blocks
our crawler IP address based on just the initial crawl, the follow-up crawl would miss any
potential inconsistencies for that site. This assumes that blocking is consistent for both
HTTP and HTTPS requests.

Identifying significant content differences While it is straightforward to detect pages
with non-identical content using byte-wise comparisons, using this approach would flag con-
tent differences between HTTP and HTTPS for pages that are essentially identical (e.g.,
due to a difference in timestamp at the bottom of a page) or have dynamic nature (e.g., a
product catalog page rotating featured items on each access). Thus, to better understand
meaningful content differences, we need heuristics to help filter out such cases.

In particular, we use heuristics inspired by prior research on near-duplicate detection for
webpages [82], [83]. This prior work did not provide open-source implementations or sufficient
justification for parameter settings, so we base our own heuristics on three steps common to

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 36

all of the prior work:

• Parse HTML content and remove nonvisible parts (e.g., markup [82] and headers [83]).

• Retrieve a set of word-based n-grams5 from the remaining content, ignoring all whites-
pace (n=10 [82] or n=3 [83]).

• For each pair of processed pages, compare the similarity of their n-grams.

A limitation of prior work is that it is tuned to find near-identical pages, while our goal is
to find cases that are not. Thus, our approach is inspired by the following insights. First,
we can filter out dynamic webpages by loading the same page multiple times over the same
protocol—if the page content changes, then any such changes should not be counted when
comparing HTTP to HTTPS. Second, we observe that dynamic pages often use the same
page structure (e.g., use the same HTML template) and the changes occur only in a small
set of regions in the document.

Based on these insights, we develop an algorithm for calculating “distance” between two
pages, which we then use as a metric to quantify their differences on a scale of 0 to 1. First,
we parse the HTML document, filtering either all text visible to a user,6 or a list of HTML
tag names (to capture the page structure). Next, we transform the result into a set of 5-
grams. After getting such 5-grams for two pages, we compute the Jaccard distance (i.e., the
size of the intersection of the two sets divided by the size of their union).

We then determine that there is a significant content difference between HTTP/S versions
of a page if the following properties hold with parameters α, β, γ ∈ [0, 1]:

1. The page-structure distance between HTTP and HTTPS, is greater than γ.

2. The visible-text distance between HTTP and HTTPS, d-across-protocols, is greater than
α. This filters differences appearing due to minor changes such as timestamps in visible-
text, and/or cookie-identifiers in the source.

3. The visible-text distance between the same page fetched twice over HTTP + β, is less
than d-across-protocols. This ensures that if a page is dynamic over HTTP, then the
difference it presents over HTTP/S must be greater than the baseline difference due to
dynamicity, by an amount controlled by β, in order for the page to be counted in our
analysis.

We obtain and use the data for computing the distances as follows. Our initial crawl loads
each page over both HTTP/S to find the ones with non-identical bodies. A day later, we run
a slow follow-up crawl only on the pages with non-identical bodies over HTTP/S, to identify
any false positives from the initial crawl. For cases where non-identical bodies persist, we
then identify pages with significant content differences satisfying the above properties. For
assessing properties 1 and 2, we compare the HTTP/S versions of the page from the slower
crawl. For property 3, we compare the HTTP version of the page from the initial crawl with
the HTTP version of the same page from the follow-up crawl.

This method provides us with an objective way of measuring visual differences across pages

5An n-gram is a contiguous sequence of n items from a given list. For example, word-based 2-grams
generated from “to be or not to be” include “to be”, “be or”, “or not” and so on.

6Using the code found here: https://stackoverflow.com/a/1983219.

https://stackoverflow.com/a/1983219

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 37

Type Description Example

Misconfigured
redirections
(82.6%)

Choosing a default protocol for
all visitors, but accidentally set-
ting up redirections which do not
preserve resource paths.

developers. foxitsoftware. cn/ pdf-sdk/

free-trial gets redirected to the website
homepage if the request was over HTTP
(instead of being redirected to the requested
page at HTTPS).

Unintentional
support

Accepting HTTPS connections
without serving meaningful con-
tent.

www. historyforkids. net presents default
server page over HTTPS accesses but provides
site-specific content otherwise.

Misconfigured
headers

Incorrectly using the response
status codes.

www. onlinerecordbook. org/ register/

award-unit returns 200 HTTP OK status for
both HTTP/S accesses, but the actual content
at the latter says “Page not found! The page
you’re looking for doesn’t exist”.

Different versions Providing a potentially up-
graded version at HTTPS,
which might have different
content for the same resource
request.

video. rollingout. com provides different
content at the index page of the website based
on the protocol used during request.

Table 4.1: Characterization of content differences. The fraction of all pages with inconsis-
tencies that fall into a category is reported when available.

served over HTTP/S, while taking into account their inherent dynamic nature. We note that
whether a user actually finds a set of pages different is subjective to some extent. For the
purposes of this study, we assume that the greater the visual differences across pages, the
greater the probability of a user also finding them different.

Fig. 4.3b presents a CDF of the visible-text distances for all byte-wise non-identical sets
of HTTP/S pages crawled. The majority of pages (82.4%) have a visible-text distance of 0,
and are thus essentially identical. To validate this metric and determine thresholds to use
for significant differences, we manually inspected more than a dozen pages at random from
the set clustered around 0, and indeed find them all to have minor differences that we would
not consider meaningful.7

However, there is a long tail of remaining pages with potentially significant visible-text
differences—and it is possible for two pages with few visual differences to be semantically
very different. The curve in Fig. 4.3b does not reveal any obvious thresholds for detecting
significant page differences, so we provide results using a low threshold (α = 0.1, β = 0.1,
γ = 0.4) that finds more inconsistencies, and a stricter, high threshold (α = 0.4, β = 0.2,
γ = 0.6) that finds fewer. These thresholds for α are marked on the figure using vertical
lines.

Although the selection of parameters entailed some manual tuning, our root cause analysis
indicates that this approach worked well for identifying inconsistencies. Namely, in Section

7For the sample size we used, the estimated fraction of pages with minor differences in the cluster is 0.90
± 0.10, with a 95% confidence interval.

developers.foxitsoftware.cn/pdf-sdk/free-trial
developers.foxitsoftware.cn/pdf-sdk/free-trial
www.historyforkids.net
www.onlinerecordbook.org/register/award-unit
www.onlinerecordbook.org/register/award-unit
video.rollingout.com

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 38

Type Description Example

Misconfigured
redirections
(19.7%)

Fixing broken links through redi-
rections, but only over one proto-
col.

www. sngpl. com. pk/ web/ tel: 1199 redi-
rects to the website homepage when accessed
with HTTP, but presents a 404 Not Found
otherwise.

Fixed Ports
(8.7%)

Embedding or enforcing port num-
bers in the URLs.

facade. com/ content redirects to facade.

com: 80/ content/ , resulting in a connection
error on accesses over HTTPS.

Partial support Not supporting HTTPS at a por-
tion of site content.

www. indiana. edu/ ~ iubpc/ , and all re-
sources under the directory.

Different versions Providing a potentially upgraded
version at HTTPS, which might
not require hosting resources from
the old version.

aedownloadpro. com/ category/

product-promo/ is only available at the
HTTP version of the site.

Table 4.2: Characterization of content unavailability issues. The fraction of all pages with
inconsistencies that fall into a category is reported when available.

4.2.1, we attribute the vast majority of the identified content differences (at least 82.6% of
pages) to server misconfigurations.

4.2 Results

We performed the measurements in October 2019 from a university network in Boston,
Massachusetts (USA). From the 110K sites (the Alexa list in §4.1.2) investigated, our crawler
found at least one internal link for 68,369 websites available over both HTTP and HTTPS.
We plot the number of sites excluded from the crawl due to various reasons, using bins of
10K websites, in Fig. 4.3c. The miscellaneous category includes cases where our crawler
encountered parsing errors, pages relying on JavaScript, or a domain hosting only one page
with no internal links.

For the rest, we show the number of links crawled per site as a CDF in Fig. 4.3a. The
average number of internal links captured and crawled was 225. The cluster at x = 250 is
due to the threshold we had set (§4.1.2), our crawler stops searching for new links after the
limit has reached.

4.2.1 Summary Results

We observe 1.5% of websites (1036 of 68,369) have content unavailabilities, and 3.7% (2509
of 68,369) have content differences (3.1% with stricter significance thresholds). For websites
with at least one inconsistency, the average number of pages with inconsistencies is 31.9 and
27.2, respectively. Fig. 4.4a plots CDFs of the number of inconsistencies per site, showing
that while most sites have few inconsistencies, there is still a significant percentage of websites
(15%) where we find inconsistencies for at least 50 internal links.

We identify several root causes for these inconsistencies by manually analyzing 50 random

www.sngpl.com.pk/web/tel:1199
facade.com/content
facade.com:80/content/
facade.com:80/content/
www.indiana.edu/~iubpc/
aedownloadpro.com/category/product-promo/
aedownloadpro.com/category/product-promo/

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 39

0 50 100 150 200 250
Number of content inconsistencies

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Content unavailabilities
Content differences

(a) Number of inconsistencies
per website.

0 20 40 60 80 100 (LT)
Number of bins

0.00

0.02

0.04

0.06

Pr
es

en
ce

 o
f i

nc
on

si
st

en
ci

es

Content unavailabilities
Content differences

(b) Alexa rank vs. inconsistency
presence.

0 20 40 60 80 100 (LT)
Number of bins

0

20

40

60

80

100

Av
g.

 in
co

ns
is

te
nc

ie
s

pe
r

bi
n

Content unavailabilities
Content differences

(c) Alexa rank vs. #inconsis-
tencies.

Figure 4.4: Inconsistencies are prevalent on a small but significant number of websites, and
are not correlated with site popularity. (LT) refers to Long Tail results.

instances for both unavailability and content differences. Tables 4.1 and 4.2 provide a de-
scription and one example for each (the types represent commonly observed behaviors, and
do not represent a complete taxonomy). We then label pages as (i) “Misconfigured redirec-
tions” if their final URIs are different over HTTP and HTTPS (i.e., after performing any
redirections), and (ii) “Fixed ports” if their URIs include port numbers 80 or 8080. We note
that it is not trivial to estimate the fractions for all categories (e.g., assessing whether a web-
page presents meaningful content vs. a custom error page), and thus present the fractions
only for the two above types. Most of the cases are server misconfigurations, and as such the
corresponding inconsistencies are likely easy to fix (e.g., by providing suitable redirections).
We note that two error types dominate content unavailability inconsistencies; 404 Client
Error (82.6%) and SSLError (9.1%).8

Cross-validation with real browser Our results could be biased due to our reliance on
a Python-based crawler that does not execute JS instead of using a real browser. This could
lead to false negatives if HTTP/S differences are visible only to a JS-supporting crawler, or
false positives if differences are only visible to our custom crawler.

We cross-validate our Python crawler’s results by comparing them with the Chromium-
based crawler, and found their results to be highly consistent. Specifically, both pipelines
observed 95.8% of domains with at least one unavailability inconsistency and 86.0% of do-
mains with at least one content difference (85.1% with stricter distance thresholds).

Upon manual inspection, we observed that domains with inconsistencies visible only via
the Python-based crawler reflect (i) TLS implementation differences (e.g., minimum TLS ver-
sion allowed, certificate validation logic), (ii) presence of <meta http-equiv="refresh">9

redirections in page content and/or (iii) content differences that are less significant when
JS is enabled. While there are differences in inconsistency results, as expected, our findings
suggest that a large fraction of inconsistencies observed by the custom crawler are ones that
also would affect users visiting sites via web browsers.

It is also possible that the Python crawler missed inconsistencies that manifest only through
a browser. To estimate whether this is the case, we used 100 sample sites in the following

8The remaining errors are various 4xx and 5xx errors.
9An HTML-based instruction for web browsers to redirect to another page after a specified time.

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 40

way. First, Alexa Top 100k list was divided into bins of size 1,000 each. From each bin, we
found a sample site that had at least 250 internal pages and zero inconsistencies according to
the Python-based pipeline. We fed these 100 sample sites to the Chromium-based pipeline
to check for any inconsistencies that manifest only through a browser. In summary, we found
no such inconsistencies.

More specifically, the browser did not flag any of these websites with unavailability issues
(its usage should not have affected the availability of a page anyway), but it did find 5
with content differences (and only 1 site when using stricter significance thresholds). Upon
manual analysis, we found all of these cases were due to normal web page dynamics that
surpassed our content-difference significance thresholds (which were tuned for content based
on a crawler that did not support JS execution).

4.2.2 Factors Influencing Inconsistencies

Website popularity We test whether inconsistency rates correlate with site popularity,
and find that there is no strong relationship between the two. Specifically, we distribute
entries from Alexa Top 100K list into bins of size 1,000 each, while preserving the popularity
rank. Note that we use a separate bin for the 10K sample of the 900K least popular sites. In
Fig. 4.4b, we plot bins on the x-axis and on the y-axis the fraction of websites with at least
one inconsistency (the denominator is the number of websites with at least one link crawled).
In Fig. 4.4c, we use the same x-axis, but the y-axis is the average number of inconsistencies,
for all websites with at least one inconsistency. Content differences seem slightly more likely
on popular pages than unpopular ones, which is somewhat counterintuitive since one might
expect more popular sites to be managed in a way that reduces content differences. But one
can visually see high variance in the relationship between inconsistencies and popularity;
further, we compute the Pearson’s correlation coefficients and find only weak correlations—
not strong enough to infer that the rate of inconsistencies depends on site popularity.

Self vs. third-party hosting Cangialosi et al.[84] studied the prevalence of outsourcing
TLS management to hosting providers, as it pertains to certificate issuance and revocation.
They find it to be common, and that such outsourced providers manage certificates better
than self-hosted sites. Based on this observation, we investigate whether outsourced site
management also reduces inconsistencies between HTTP and HTTPS.

For the case of outsourced site management, we focus on one ground-truth example: Cloud-
flare. We choose them because they manage certificates for the vast majority of their hosted
websites.10 For other hosting providers, it is not clear what percent of domains are being self-
managed vs. service-managed. We begin by mapping a server’s IP address to AS number,
then use CAIDA’s AS-to-Organization dataset to retrieve the organization name. We then
focus on the 20,131 websites whose server organization is “Cloudflare, Inc.” We find content
unavailability inconsistencies in only 0.6% of these sites (a decrease of 60.0% as compared to
the average across all sites), and content-differences in 2.0% (a decrease of 45.9%). Thus for
this one example, Cloudflare management seems to reduce inconsistencies (χ2 = 200 with

10According to a recent investor report [85], ≈97% of Cloudflare customers use the free-tier product that
provides only Cloudflare-managed HTTPS certificates (consistent with estimates from prior work [84]).

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 41

Inconsistency issues

Type Sources Total Unavailability Content-diff.

HTTPS Available [86]–[88] 74,778 741 (1.0%) 1933 (2.6%)
[89] 66,206 607 (0.9%) 1691 (2.6%)

Default HTTPS [86], [89] 67,813 591 (0.9%) 1697 (2.5%)
[87] 16,221 99 (0.6%) 368 (2.2%)

HSTS Available [86] 17,557 108 (0.6%) 410 (2.3%)

Table 4.3: Comparing HTTPS adoption metrics by calculating number of websites with
issues over number of websites fulfilling the metric criteria.

p-value < 0.00001 for Pearson’s test of independence).

We compare these error rates with the set of 3,977 identified self-hosted websites. We define
them as the ones whose organizations host only one domain from the Alexa 110k sites in
our analysis, and thus are either self-hosted or hosted through a small provider.11 For these,
we find content unavailability inconsistencies in 4.5% of such websites (an increase of 200%
as compared to the average across all sites), and content differences in 8.5% (an increase of
129.7%). Thus, self-hosted sites seem to be much more likely to have inconsistencies between
HTTP and HTTPS (χ2 = 226 with p-value < 0.00001).

We posit the following reason that might explain why third-party certificate management
can help reduce inconsistencies. Prior work [84] suggests third-party services perform better
certificate management. They likely (i) can also notice server misconfigurations compara-
tively earlier due to their large number of customers and dedicated support staff, and (ii)
have default TLS-related settings in place to reduce the chance of accidental mistakes when
a site is migrated to HTTPS.

Certificate issuing authority We now investigate whether the rate of inconsistencies
is related to certificate issuing authority (CA). We found that across all domains crawled in
the study, the most commonly used CAs are Let’s Encrypt (LE; 21.6%), DigiCert (19.7%),
Comodo (18.2%) and Cloudflare (8.2%). But for domains with inconsistencies, the shares
change to 10.0%(↓), 31.6%(↑), 15.1%(↓) and 2.5%(↓) respectively. As such, we did not see
any clear trend indicating how a CA can affect inconsistency rates.

4.2.3 Comparing HTTPS Adoption Metrics

Prior work identifies several metrics for characterizing the extent to which a website supports
HTTPS [70]. In Table 4.3, we compare our inconsistency findings with those metrics, using
the Alexa list (§4.1.2). In some cases, our crawls identified inconsistencies on subdomains,
but we exclude these from the analysis to ensure a fair comparison. We find that there exists
a small but nontrivial number of sites where such metrics indicate support for HTTPS/HSTS,
but we identify inconsistency issues. The results for HSTS are particularly surprising, as users

11We manually analyzed a small sample of the 3,977 sites, and estimate the fraction of them that are
self-hosted (versus hosted via a small provider) to be 0.79 ± 0.15, with a 95% confidence interval.

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 42

are guaranteed to be affected by inconsistencies since the browser must fetch all content over
HTTPS. A key takeaway is that, for a more accurate view of website HTTPS support, future
scans should take into account inconsistencies and scan beyond landing pages.

4.3 Discussion

While our findings provide a dose of good news about the quality of HTTPS adoption on
popular pages (the rate of inconsistencies is low), the sobering fact is that there are still a
substantial number of inconsistencies—even on some of the most popular websites. We now
discuss the implications of our findings, and why even a small number of page inconsistencies
is a finding that has broad impact.

Security Prior work argues for HTTPS support on every page of a website. Thus even
a single page with an unavailability issue can undermine security for all others in a site, as
a single access to an insecure page (due to unavailability over HTTPS) can be a vector to
enable site-wide downgrade attacks.

Usability From a usability perspective, content differences mean that a user on a HTTPS-
by-default browser may view content that the website owner did not intend to be shown.
This could lead to confusion, loss of revenue (e.g., for retail sites with missing product pages
or one that have incorrect details), and user abandonment. A caveat for our study is that we
do not have any data regarding page popularity within a site, so we cannot tell how many
users are affected by pages by content differences.

Persistency & Prevalence We found that the identified many inconsistencies are per-
sistent over time, and the total number of issues is not getting better over time. To test this,
we ran a second crawl over the Top 100K websites four months after the initial study and
observed a similar-scale set of consistency issues: 1.4% of websites with unavailability issues
and 3.6% of websites with content differences. Further, the union of all websites among
the two crawls was 2% for unavailability issues and 4.8% for content-differences (with the
intersection being 0.9% and 2.4% respectively). This suggests that although the issues affect
a small portion of the web at any given point of time, the problem is much more widespread
when considering the number of websites affected by it over time.

4.4 Conclusion

This work explored whether websites counterintuitively provide different results when the
same URI is accessed over HTTP and HTTPS. We found a small but significant fraction
of sites have inconsistency in terms of content availability and differences, and this occurs
across all levels of popularity. We find that their root causes are often simple server mis-
configurations, and thus recommend automated processes to identify and remediate these
issues. Our findings also highlight that moving web browsers to HTTPS-by-default would
still incur substantial problems for users and site accessibility, motivating the need for more
study on the impact of such approaches.

CHAPTER 4. WEB CONTENT CONSISTENCY OVER HTTP/S 43

We argue that website administrators need tools like our crawler to help them identify and
mitigate inconsistency issues to facilitate the transition to HTTPS-by-default. To encourage
this, our efficient web crawler code, dataset, and analysis code can be publicly accessed at
https://github.com/NEU-SNS/content-differences.

https://github.com/NEU-SNS/content-differences

Chapter 5

TLS Certificate Pinning in Mobile
Applications

Mobile applications (apps) are extremely popular – 230 billion apps were installed on devices
in 2021 [90] alone – and often transmit sensitive data over the Internet to deliver their service
(e.g., credentials, financial and health information). Thus, network connection security is
critically important in this context. While the standard TLS PKI provides sufficient secu-
rity for most apps, several classes of attacks have revealed gaps in its protection: tampered,
misconfigured, or poorly maintained certificate authority (CA) root stores [15] can enable
highly targeted or large-scale monkey-in-the-middle (MITM) attacks [91], [92]. To address
this issue, app developers and third-party libraries can use certificate pinning, which estab-
lishes a developer-specified relationship between a hostname and its cryptographic identity
(certificate or hash of the public key)—one that is typically hard-coded (hence “pinned”)
and that adds another layer of security compared to certificate validation that uses only the
trusted system CA root store.

Although beneficial from a security standpoint, pinning is known to introduce maintenance
overheads, misconfiguration errors, and other problems which could expose users to more
attacks. Unfortunately, there is no clear community consensus on whether the benefits of
pinning outweigh potential risks of misconfiguration and developer errors. On the web, it was
first introduced in 2011 [93], but has since been deprecated by all major desktop and mobile
browsers [94]. Android officially supports pinning since version 4.2 (released in 2012) [95],
but has since moved to not recommending pinning due to the risk of app breakage when
server configurations change [96], [97]. Apple does not provide clear recommendations for
iOS, but notes that pinning might be necessary to meet regulatory requirements [98], and
recommends long-term strategies to handle certificate changes. It is, therefore, vital to know
whether app developers implement certificate pinning; and to identify common deployment
errors that could compromise apps’ security.

In this chapter, we provide the first multi-perspective look at certificate pinning, by devel-
oping more complete methodologies for detecting it that leverage the complementary strengths
of static and dynamic analysis, characterizing its prevalence across iOS and Android, and
investigating the implications of observed implementations.

44

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 45

We develop novel static and dynamic techniques to detect and measure the adoption
of pinning. Specifically, our methodology includes more complete rules for searching app
binaries for evidence of certificates or pinning APIs, an analysis of which code is responsible
for pinning, as well as run-time analysis that reliably distinguishes pinned connections from
other confounding types of TLS connection behavior. Our work builds upon and extends
prior work in this space [13], [40], [41], [99].

5.1 Background and Motivation

During a TLS handshake, clients obtain a certificate chain (ordered list of certificates) from
servers, where each certificate is signed by the previous one. Clients trust the chain if they
trust the root certificate, and the signatures from the root (first) to the leaf (last) are all
valid. A root store or CA (certificate authority) store is a collection of such trusted root
certificates, which is included in OSes including Android and iOS [15], [100].

Certificate pinning is an alternate to trusting OS root certificates, where apps include
a custom certificate to be trusted (in their source code or metadata in the app package),
instead of the set of certificates present on the OS. We define pinned certificates as such
custom certificates that must be present in the certificate chain to successfully establish a
TLS connection. These pinned certificates could be any certificate in the chain, i.e., leaf,
intermediate, or root certificates. They could also be pinned in any form, i.e., storing the
entire certificate, a hash of the certificate, or some other identifier.

Pinning for Protection: Mobile root stores are known to include expired, unknown,
or obscure CA certificates [15], which can expose clients to TLS interception attacks. An
attacker with access to the private key for a CA certificate in the system trust store can use it
to sign arbitrary certificates (for arbitrary domains) and trick the client into accepting these
malicious certificates as valid. Using certificate pinning prevents such attacks by limiting
certificate trust to a pre-determined set of certificates instead of trusting a certificate issued
by any CA certificate in the system trust store. Note that certificate pinning not only protects
against malicious actors, but also against investigators and auditors seeking to analyze the
data exchanged between devices and servers (e.g., to understand personal data exfiltration,
cross-border data transfers, etc.).

Pinning for Customization: Certificate pinning enables developers to define a specific
certificate to trust. This allows developers to issue and sign their own trusted certificates
instead of obtaining one from a trusted third-party CA, thus regaining more control over
their internal certificates at the cost of limited utility since custom CAs will not be trusted by
browsers or other software that does not trust the custom CA. Note, however, that verifying
if a pinned certificate is present in a chain is not sufficient to ensure that the chain is correct;
rather, the TLS library must still validate all other properties of certificates (i.e., Common
Name matching, revocation checking, etc.) to protect against various other attacks.

Pinning and HPKP: Certificate pinning methods found in mobile apps differ greatly from
HTTP Public Key Pinning (HPKP). HPKP is an obsolete technique for web browsers that
allowed website owners to specify pinned certificates for their domain. One key reason HPKP
was proposed is that website owners in general cannot directly control the trust store for a

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 46

Android iOS
Rank Random Popular Common Common Popular Random

1 Education 12% Games 36% Games 18% Games 18% Games 21% Games 15%
2 Games 12% Weather 2% Productivity 12% Productivity 14% Photography 11% Business 11%
3 Tools 6% Finance 2% Business 7% Business 8% Social 6% Education 11%
4 Music 6% Shopping 2% Communication 6% Social 7% Education 6% Food 7%
5 Books 6% Entertainment 2% Finance 6% Education 6% Finance 6% Lifestyle 7%
6 Business 5% Food 2% Education 5% Finance 6% Lifestyle 5% Utilities 6%
7 Lifestyle 5% Social 2% Social 5% Utilities 5% Entertainment 4% Entertainment 4%
8 Entertainment 4% Productivity 2% Health 4% Photography 4% Utilities 4% Health 4%
9 Travel 4% Photography 2% Travel 3% Health 3% Productivity 4% Travel 4%
10 Personalization* 4% Music 2% Lifestyle 3% Lifestyle 3% Weather 4% Shopping 3%

Table 5.1: An overview of our app datasets. We present the top 10 app categories from each
dataset, along with their percentages over the total number of apps in that dataset.

browser, and HPKP gave them a way to specify custom certificates for pinning on a domain.
In contrast, mobile services that use pinning can control both the client software (the app)
and the web servers they communicate with. As such, there is no need for any additional
protocol like HPKP to specify how pinning should occur—mobile apps simply include the
pinned certificate material in the app code and/or metadata.

We also note that the threat models and stakeholders in the two techniques are different.
For HPKP, the website owner does not trust the OS or browser root store, but assumes
that browser will enforce a specified pinned certificate. Further, HPKP trusts the first seen
certificate (and thus does not solve the problem for adversaries that can intercept the first
TLS connection) and also does not support changing the pinned certificate. In contrast,
mobile services that use certificate pinning do not trust the OS root store, but trust that the
OS will faithfully execute its specified certificate validation and pinning code. In addition,
mobile services can change the pinned certificate in numerous ways, e.g., by pinning a CA
certificates that can issue additional trusted leaf certificates, or releasing a new version of
the app with a new pinning specification.

5.2 Goals

Our study is organized around the following key research questions:

RQ1: How can we reliably detect pinning and its prevalence in mobile apps, in a platform-
agnostic way?

RQ2: What are the characteristics of apps that deploy pinning (popular vs unpopular
apps, app categories, pinned destinations) and what are their implications?

RQ3: How consistently do developers use pinning across the Android and iOS versions of
the same apps?

RQ4: How is pinning implemented (e.g., nature of certificate chains, code that contributes
to pinning)?

RQ5: How secure is pinning in mobile apps? And what kind of data is protected by

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 47

Figure 5.1: Our methodology to detect certificate pinning. We (1) crawl Android and
iOS apps, (2) search app contents for certificate files or hashes, (3) retrieve certificates
corresponding to the hashes using publicly available Certificate Transparency logs, (4) launch
every app on a real device and collect network traffic in two distinct settings: (5) when app
traffic is not intercepted, and (6) when app traffic is intercepted through monkey-in-the-
middle (MITM) technique. We identify and mark TLS connections that transmit data in
the former setting but not the latter as pinned.

pinning?

5.3 Methodology

In this section, we detail our datasets as well as the novel static and dynamic approaches we
use to detect certificate pinning (RQ1) and shed light on the implementation aspects related
to it. Figure 5.1 presents an overview of our methodology.

5.3.1 Datasets

To understand the prevalence of pinning in different parts of the Android and iOS ecosystems,
we collect a wide and diverse range of apps on both platforms. We group the apps in three
different datasets: popular apps, random apps, and “common” apps. The “common” apps
dataset contains the same app on Android and iOS, thus enabling us to perform head-to-
head comparisons of the two platforms. We collect these apps at various points in time in
2021.

Collecting Android apps from the Google Play Store is simpler than collecting iOS apps
from the Apple App Store. For Android, we use GPlayCLI [101] to download apps directly
from the Play Store. For iOS, we automate GUI interactions with the deprecated iTunes
12.6 application to download apps, based on previous work [14]. We obtain the category
of each app (e.g., gaming or finance) directly from the metadata set by the developers and
available in the respective stores.

Common Apps (n = 575): Linking apps present on one market with those present on
another is non-trivial. We create the set of common apps using AlternativeTo [102]. This
website crowdsources information, recommendations, and reviews for software. Apps listed
on this website can have links to the Google Play Store and Apple App Store if they are
present on both platforms. We retrieve ≈1,000 app pages sorted by popularity on this
website and look for apps listed on both stores. Using this technique, we obtain 575 apps;
we manually verify (on a small random sample of 30 apps) that these apps are in fact the

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 48

same. To respect community norms related to crawling, we add our contact information in
the User-Agent field, and limit our crawler to request 1 page per second.

Popular Apps (n = 1,000): For popular apps on Android, we use the google-play-
scraper [103] to crawl “Top Free” lists for each category on the Google Play Store. We
pick at random 1,000 apps from these lists (≈12k in total). For iOS, we use the iTunes
Search API to fetch top apps using 19 generic category names as search terms (e.g., pro-
ductivity, finance, music). The API returns at most 100 results per call. We repeat the
process for each category and collect unpaid apps that are compatible with our test device,
compiling a set of 1,000 apps. Both sets contain apps that capture the notion of popularity
for each store; they do not necessarily represent the top 1,000 apps for either platform. We
note that we used the US version of the app stores while compiling these listings.

Random Apps (n = 1,000): To compile a list of random apps, we start out with fetching
details about as many apps as possible. Unfortunately, the list of all apps on either platform
is not public. For Android, we use a list of 1.35M app IDs compiled by prior work [41]. For
iOS, we crawl 1.25M app IDs from the official store listings [104]. From each of these lists,
we randomly select 1,000 apps and download them from the respective stores. We believe
that the large size of our lists provides a sufficient degree of randomness.

We perform all crawls from North America; We collected the Common and Popular sets
from February to May 2021, and the Random sets in October 2021. Due to our app collection
technique, we see app collisions between the three sets; in such cases the same app is used in
the sets they appear in. Accounting for collisions, we collect 2,564 unique apps for Android
(11 collisions for Common and Popular sets). For iOS we collect 2,515 unique apps (60
collisions for Common and Popular sets). We see no collisions between the Random app
set and other sets on either platform. Thus in total, we collect 5,079 unique apps, counting
Android and iOS apps as different apps for the Common set.

5.3.2 Static Analysis

Static analysis involves studying apps without actually executing them. In this section, we
discuss the parts of apps we study and the exact techniques used to infer whether certificate
pinning is being implemented across apps.

Configuration Files In Android, Network Security Configuration (NSC) files are used to
customize network security settings without having to modify app code [39]. This technique
allows apps to define general security settings or per-domain settings, with the option to
specify certificates to trust, and to pin certificate hashes. We use static analysis to extract
the Android Manifest file, which we parse to check if an app is using an NSC. If it is found,
we extract the pertinent configuration file and parse that to obtain certificates and hashes
that the app uses, extracting files as needed.

In iOS, App Transport Security Settings provide a similar feature of specifying pinned
hashes in an app’s configuration files [105]. We note that it is a recent feature introduced
in iOS 14 in September 2020, and is unavailable in the version of iOS used in our study.
Because this feature was released close to our data crawls, we do not check for its prevalence
in our datasets.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 49

Embedded Certificates Pinning implementations typically specify which certificates to
pin in an app code. Therefore, we search for these certificates in app code by looking for any
files ending with .der, .pem, .crt, .cert, and .cer extensions, or by extracting strings with
delimiters such as “-----BEGIN CERTIFICATE-----”. In addition, we also search for SHA-
1/256 hashes of the SubjectPublicKeyInfo (SPKI) field of certificates that is traditionally
used in various protocols (e.g., HTTP Public Key Pinning [106] and DANE [107]), but also
seen in some pinning implementations (e.g., Chrome [93] and the Android OkHttp library
[108]).

We decompile the Android apps using Apktool [109]. As iOS apps are encrypted, we use
Flexdecrypt [110] or Frida-iOS-Dump [111] to extract decrypted payloads. Flexdecrypt is
faster than Frida-iOS-Dump because it does not require opening an app for decryption.
We then employ a fast recursive grep tool, ripgrep [112], to search for the regex patterns of
interest, i.e., hashes or certificates. For hashes we use the regular expression sha(1—256)/[a-
zA-Z0-9+/=]{28,64}. The length allows us to search for hashes that are either base64- or
hex-encoded. In addition, we use libradare2 [113] to analyze strings from native libraries
and/or executables present in the apps. We note that we do not attempt to de-obfuscate
any decompiled files, nor can we handle any code that an app dynamically downloads during
run time, which is a limitation common for any static analysis approach.

Associated Certificates We search for certificates associated with SubjectPublicKeyInfo
hashes that our analysis found in the apps using the crt.sh certificate search [114] that indexes
data from Certificate Transparency (CT) logs.

Third-party Pinning Code Because we have information about the path in the app
code where each pin or certificate is found, we can use this information to shed light on
the source of pinning code. To check for third-party pinning, we manually review all the
certificate paths that appear in more than 5 apps, and infer whether the source is indeed a
third party using publicly available knowledge (e.g., code in the sensibill folder reflects the
billing API of the Sensibill SDK in Android apps).

5.3.3 Dynamic Analysis

There are several reasons why support for pinning found statically in apps might not lead to
pinning being used at run time. For example, we may detect code that is unused (e.g., due
to a library that is never loaded, a library that provides optional support for pinning, or an
outdated app version dynamically disabling pinning at run time). To address this, we use
dynamic analysis; namely, we install and run apps on devices while collecting device logs and
network traffic to determine if apps pin certificates at run time. Thus, we consider results
from dynamic analysis to be the ground truth about whether apps actually use pinning or
not. In this section, we describe the components used in our dynamic analysis in detail and
how they tie together to detect pinning.

Dynamic Pipeline We execute apps on real devices and collect network traffic. Our
dynamic pipeline relies on automation frameworks for both platforms that control the devices

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 50

via USB connections, and can install/run/uninstall apps on them. Our devices connect to a
WiFi hotspot under our control. We use mitmproxy [115] to proxy all the traffic from devices
to servers, and to have the ability to MITM the traffic using an arbitrary CA certificate.

For the Android tests, we use a Pixel 3 device running a factory system image of Android 11
(released in September 2020; modified to include the mitmproxy certificate in the certificate
store). For the iOS tests, we use an iPhone X running iOS 13.6 (released in July 2020; with
trust for the mitmproxy certificate enabled). Our iPhone is jailbroken using Checkra1n [116]
to facilitate various aspects of the study (e.g., app decryption for static analysis, pinning
circumvention). Our choice to use the particular iPhone model and OS is based on the
fact that there were no jailbreaks available for the latest combinations at the time of our
experiments.

During dynamic testing, the automation framework installs one app at a time on the
test device to ensure traffic isolation, waits 30 seconds to collect app traffic, and uninstalls
the app before moving on to the next. For each dataset of apps, we run two experiments.
Our first baseline experiment (“non-MITM”) records TLS traffic triggered by apps without
any interference. The second experiment (“MITM”) runs with mitmproxy enabled, which
tries to MITM any TLS connection. Based on the difference in app behavior in these two
experiments, we extract information about pinned connections, as described in detail in the
next section.

App Interaction We experimented with various techniques to automate interacting with
apps using UI Automator [117] for Android and a similar tool for iOS. While automation is
itself feasible, the key issue is that apps on iOS and Android often present different UIs and
we could not identify a general way to exercise the same functionality across platforms and
thus could not conduct an apples-to-apples comparison. Given this, we also explored the
potential for using random interactions that are commonly used in prior work (e.g., [118],
[119]). While the interactions would not be identical across platforms, they also should not
have any particular bias overall. We conducted a small set of experiments where we used
automated, random UI interactions, and we found no significant change in the number of
domains contacted when compared to tests without any UI interactions. Thus, we do not
perform any automated or manual interactions with apps in our study.

We varied the amount of sleep time (15 s, 30 s, and 60 s) from installing an app to unin-
stalling it, and heuristically found 30 seconds to be the best value for our study. More
specifically, we found the average number of TLS handshakes performed by a small random
sample of apps in the three settings to be 20.78, 23.5, and 24.62 respectively. As the vast
majority of TLS connections are established within 30 seconds, we believe the diminishing
returns beyond this point are not worth the additional wait.

Detecting Pinned Connections A key challenge for detecting pinned connections is
that it can be difficult to distinguish between a connection that fails due to TLS interception
on a pinned connection, as opposed to a connection that fails for other reasons (e.g., server-
side issues). At a high level, our approach is to use a differential analysis, where we detect
differences in connection behavior with and without TLS interception. Specifically, if a
connection to a destination carries traffic beyond the handshake without TLS interception,

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 51

and never carries traffic when with TLS interception, we mark the destination as pinned.

More specifically, we observed that a pinned TLS connection exhibits two key properties,
and neither is unique to TLS interception. First, pinned TLS connections typically send
failure signals via a TLS alert or TCP connection reset if an attempt is made to MITM
them. However, these signals may also appear in an app traffic for reasons other than pinning
(e.g., TLS alert due to an unsupported protocol version). Second, pinning may result in a
connection being successfully established, but it will never be used for transmitting useful
application data if there is an attempt to MITM the connection. However, even without
TLS interception, apps will create redundant connections and never use some of them to
transmit application data. Thus, we need a way to account for such confounding factors. By
comparing connection behavior in the two settings, we can attribute any observed connection
failures to the presence of pinning. We further rely on the following definitions to evaluate
a connection status:

Used Connection To determine whether a TLS connection sends application data, we rely
on the following tests. For TLS 1.2 or below, the presence of any “Encrypted Application
Data” packets is sufficient to infer that the corresponding TLS connection is being used
by a client. This inference does not work for TLS 1.3, where all encrypted records (data,
alerts, or handshake messages) are disguised as TLS 1.2 “Encrypted Application Data” to
reduce issues with middleboxes. Thus for TLS 1.3, we rely on the following two heuristics
to identify connections that send application data: 1) clients either send more than two
“Encrypted Application Data” packets, or 2) the second packet is not the same length as an
encrypted TLS alert. The reasoning behind this is that the first encrypted client packet must
always be “Client Handshake Finished” for successful connections according to the protocol
specification, the second packet may or may not be an alert to indicate connection closure
and third (if present) can only mean that application data has already been transmitted.

Failed Connection We define a failed connection as any TLS connection that goes unused,
and where the clients abort connections with TCP RST or TCP FIN flags. This helps avoid
false positives for cases where a connection simply remained unused in our experiments due
to the limited recording time.

After collecting that status of connections, we evaluate which destinations are used at least
once. Such information is readily available: 99% of the TLS traffic in our experiments have a
non-empty SNI field, indicating the destination hostname for the connection. If a destination
has any TLS connection that is used in the non-MITM setting, but TLS connections that
always failed in the MITM setting, we mark it as pinned. We note that the heuristic to
mark used connections does not need to be perfect, as we ultimately rely on whether an app
behaves differently in the two experiment settings to determine pinning status.

5.3.4 Circumventing Pinning

Using the aforementioned methodology, we detect apps that implement pinning. In order
to understand why apps implement pinning (RQ5), we attempt to look at the traffic sent in
those pinned connections. To this end, we use Frida [120] to hook into various popular TLS
libraries and disable certificate validation checks. When successful, this allows us to continue

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 52

using our dynamic pipeline to MITM connections and obtain data that apps send to servers
in pinned connections. We note that pinning circumvention is not guaranteed to succeed, as
developers can always use custom TLS implementations rather than relying on popular ones.
Using this approach, we were able to successfully circumvent pinning for ≈51.51% unique
destinations on Android, and ≈66.15% unique destinations on iOS.

5.3.5 PII Analysis

Pinning can either be used to protect sensitive user data, or hide data collection from au-
ditors. As we do not interact with the apps, we cannot check if pinned connections are
being used to protect user data (e.g., banking credentials). However, we can still check
for the presence of other sensitive information that apps are known to collect from prior
studies [118], [121]–[123].

More specifically, if we are successful in circumventing pinning, we inspect the decrypted
application data to check for the presence of sensitive personally identifiable information
(PII) that can harm user privacy. We also check whether PII presence differs significantly in
the pinned vs non-pinned traffic. The PII we search for includes the following information
for both platforms: IMEI, advertisement ID, WiFi mac address, user email, state, city and
latitude/longitude. Although this list is not exhaustive by any means, it is sufficient for the
purposes of this study as we are mainly interested in comparing PII prevalence across pinned
vs non-pinned traffic, rather than finding out whether apps transmit any PII.

5.3.6 iOS Background Traffic

For Android, our manual analysis did not detect any background traffic that could interfere
with our experiments. However, the situation for iOS turned out to be difficult to handle.
First, we noticed TLS traffic to various Apple-controlled domains (icloud.com, apple.com and
mzstatic.com) that spanned the whole duration of dynamic testing (mainly due to connection
retries in MITM experiments). We simply excluded these destinations from our analysis.

Second, and more importantly, we also needed to ignore traffic to many first-party destina-
tions for apps, because it might have been triggered by the OS, rather than the app. This is
due to a feature in iOS that contacts all destinations that are marked as “associated” in an
app’s entitlements. When an app is installed, iOS triggers TLS communication with these
destinations to verify that they are indeed controlled by the app’s developer (by going to a
specific pre-defined path). The purpose of this feature is to facilitate connections between
the app and its website(s) (e.g., to share credentials, to navigate from the browser to the app
when the user visits one of its websites). In our testing, we noticed that all this traffic appears
as pinned, likely because the underlying iOS service does not trust our MITM certificate.
Unfortunately, the traffic from OS exhibits a similar TLS fingerprint as regular app traffic.
As such, we could not find a way to distinguish traffic to these destinations triggered by the
app vs the iOS background service. To avoid falsely attributing pinning to apps, we ignored
all associated destinations from an app’s entitlements during our analysis. More specifically,
66% of apps did not specify any associated domain, so no traffic was excluded for these. For
the rest, there were on average 4.8 unique associated domains present in the configuration.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 53

Study Year Prevalence Analysis Dataset size Dataset source

Fahl et al. [13] 2012 10% Dynamic 20 High-profile Android apps
Oltrogge et al. [124] 2015 0.07% Static 639,283 Apps from the Google Play store

Razaghpanah et al. [99] 2017 2% Dynamic 7,258 Android apps found in the wild
Stone et al. [125] 2017 28% Dynamic 135 Security sensitive Android apps

Possemato et al. [40] 2020 0.62% Static 16,332 Android apps using NSCs
Oltrogge et al. [41] 2021 0.67% Static 99,212 Android apps using NSCs

Table 5.2: Certificate pinning prevalence mentioned in prior work. Note that the variety of
analysis techniques, datasets, and passage of time make direct comparisons difficult.

Dataset type Dynamic analysis
Static analysis

Embedded Certificates Configuration Files*

Common (n = 575)
Android 8.17% (47) 26.96% (155) 2.78% (16)
iOS 8.52% (49) 22.96% (132) -

Popular (n = 1,000)
Android 6.7% (67) 19.7% (197) 1.8% (18)
iOS 11.4% (114) 33.4% (334) -

Random (n = 1,000)
Android 0.9% (9) 9.9% (99) 0.6% (6)
iOS 2.5% (25) 9.5% (95) -

Table 5.3: Certificate pinning prevalence found using various methods across different
datasets. Each cell denotes the number of apps with one instance of pinning, over the
total number of apps in that dataset. (*) denotes the method used by prior work.

Note that this generic approach of excluding traffic can only cause false negatives (i.e., filter
out domains that actually pin), not false positives.

Since our goal is to conduct a head-to-head comparison of pinning prevalence in Android
vs iOS, we re-ran our dynamic pinning detection pipeline for apps in the Common dataset
that were found to be pinning in either Android or iOS through the prior methodology (72
apps in total). We modified our setup for the re-run in the following way in order to avoid the
issue with associated destinations: after installing an app, we waited 2 minutes to let the OS
finish communicating with these first-party destinations. We launched the app afterwards,
and then collected data for 30 seconds as we had done before. We use results from this re-run
whenever we mention iOS Common dataset in the rest of this work. On a positive note, the
limited re-run did not reveal any false negatives in the initial run. Thus, we do not believe
our methodology of handling iOS background traffic affects the results significantly.

5.4 Results

We apply the techniques presented in Section 5.3 on each dataset we have collected in order
to understand the prevalence of certificate pinning. We present the certificate pinning we
find, per dataset and platform, for our static and dynamic analyses in Table 5.3. To help us
compare our findings with prior studies, Table 5.2 summarizes pinning prevalence indicated
in prior work. It is clear, however, that these prior studies entail a wide range of techniques
for detecting pinning, use different app datasets, and were conducted over a wide time range.
Thus, it is difficult to conduct a meaningful apples-to-apples comparison. Instead, to enable
comparison with prior work, we focus on the NSC-based static analysis technique used by

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 54

Category (Rank) Pinning % No. of Apps

Finance (9) 22.99 % 20
Social (14) 17.81 % 13
Events (28) 15.0 % 3
Dating (33) 14.29 % 2

Food & Drink (15) 13.64 % 9
Shopping (18) 12.96 % 7
Comics (32) 12.5 % 2

Automobile (25) 8.33 % 2
Travel (12) 6.49 % 5
Weather (24) 5.88 % 2

Table 5.4: Top 10 categories of apps that pin in Android across all datasets and pinning
prevalence per category. Ranks indicate the popularity of a category in our dataset.

multiple prior studies, using the datasets we collect.

Pinning by Technique: Prior research mainly relies on Network Security Configurations
(NSCs) to detect pinning in Android [13], [40]. For our Android datasets, using the same
approach, we find relatively few apps to pin (from 0.6% to 2.78% depending on the dataset).
In contrast, our dynamic analysis technique finds up to 4 times more pinning (i.e., 1.8% to
6.7% in popular apps). Our findings suggest that apps likely have many options other than
NSCs to deploy pinning.

We further find that pinning prevalence varies substantially for the novel static and dy-
namic approaches we develop. While static approaches provide us with potentially pinning
apps, dynamic analysis gives us stronger evidence of pinning as we observe pinned behavior
through network connections. Due to this reason, for the remainder of this work, we call an
app to be pinning if we find at least one instance of a pinned connection from the app in our
dynamic analysis results.

Pinning by Platform: We find more pinning apps in iOS as compared to Android across
all datasets. While we present a head-to-head comparison of apps in the next section, we
find it interesting that even random iOS apps pin substantially more (2.5%) than the set
of random Android apps (0.9%). Upon closer inspection, we notice that two destinations,
www.paypalobjects.com and firestore.googleapis.com, get pinned in 10 and 5 apps
respectively in the iOS random dataset. In comparison, for the Android random dataset,
we do not find any common pinned destination. As such, increased pinning in iOS might
be due to these and other third-party libraries that are pervasive in the iOS ecosystem, and
choose to pin, as compared to the ones for Android.

Pinning by Category: To understand the characteristics of apps that use pinning (RQ2),
we check whether apps belonging to certain categories pin more frequently than others. For
each category from the two platforms, we normalize the number of apps that pin by the
number of apps we have in that category. We present the top 10 app categories that pin in
Android (Table 5.4) and iOS (Table 5.5).

We find that the top category in both platforms is “Finance,” suggesting the use of pinning

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 55

Category (Rank) Pinning % No. of Apps

Finance (9) 20.63 % 26
Shopping (13) 16.48 % 15
Travel (14) 13.48 % 12

Social Networking (8) 11.02 % 14
Photo & Video (6) 10.67 % 16

Lifestyle (5) 8.7 % 14
Food & Drink (11) 8.49 % 9

Sports (16) 8.16 % 4
Navigation (22) 8.0 % 2

Books (19) 7.69 % 3

Table 5.5: Top 10 categories of apps that pin in iOS across all datasets and pinning prevalence
per category. Ranks indicate the popularity of a category in our dataset.

is to protect sensitive user data in these apps. The next two categories are “Social” and
“Shopping,” likely again due to the sensitivity of data shared on apps in these categories.
In terms of categories within a platform, we find it interesting that none of the top 3 app
categories for either platform appears in the respective top 10 pinned categories list. In fact,
“Games” is the most prevalent category across all our datasets, but does not appear in the
top 10 pinned categories for either platforms.

5.4.1 Pinning in Common Apps

To understand whether pinning apps pin the same domains on both Android and iOS (RQ3),
we consider apps from our Common dataset. From this dataset, we find 69 apps that pin on
at least one platform. Of these, 27 apps pin on both Android and iOS, 20 apps pin solely
on Android, and 22 apps pin solely on iOS. For each app, we compare the set of pinned and
unpinned domains across platforms.

By definition, a single entity controls both Android and iOS versions of the same app in
the common dataset, and one might hypothesize that they pin domains in the same way.
However, we find in practice that they do not always do so, and thus define inconsistent and
consistent pinning for this common dataset as follows. An app has inconsistent pinning if
a domain pinned on one platform is not pinned on the other. An app has consistent pinning
if it pins at least one common domain on both platforms and has no inconsistent pinning.
Based on these definitions, we present Figure 5.2. For a set of apps, we have inconclusive
results, as domains pinned on one platform do not appear on the other at all. For these, we
can not determine if the domains would be pinned or not, as we have not observed them.

Apps Pinning on Both Platforms: Of the 27 apps that pin on both platforms, we find
that 15 apps have consistent pinning. For these apps, we aim to understand the number of
common domains pinned on both platforms. To this end, we compare pinned domains on
Android to pinned domains on iOS for each app. We find that 13 apps have the same set of
domains pinned on both platforms. For the remaining two apps, we see that one domain is
pinned on both platforms (Android pins one other and iOS pins two others).

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 56

Figure 5.2: Pinning found in the Common dataset split by platforms. We classify pinning
found in this dataset into: Inconsistent, Consistent, and Inconclusive as defined in Sec-
tion 5.4.1.

To understand the inconsistent pinning apps, we compare pinned domain sets to not pinned
domain sets. To compare similarities in pinned domains for two pinning sets, we use Jaccard
indices. To compare a pinning set to a non-pinning set, we look at the percentage of pinning
domains present in the non-pinning set. We use this instead of Jaccard indices here as we
care about domains that are pinned in one set and not pinned in the other, as opposed to
similarities between the two sets. We present a heatmap of these calculations in Figure 5.3.
Each inconsistent app is represented as a row with the first column giving us the overlap of
pinned domains on both platforms. The second gives us the percentage of pinned domains on
Android that appear as unpinned on iOS; the third gives the percentage of pinned domains
on iOS that appear as unpinned on Android. Of the 6 apps, we see that 2 have overlaps of
pinned domains; 3 have pinned domains on android that they do not pin on iOS and 3 pin
domains on iOS that they do not pin on Android. For the remaining 6 apps, all values on
such a heatmap would be 0. On analyzing these, we see that they share no common domains
on the two platforms; thus all overlaps would be 0 and hence inconclusive.

Apps Pinning on One Platform: To understand how domains pinned on one platform are
handled on another platform, we look at apps that pin exclusively on one platform. For this
set, pinning consistencies are nonexistent as the other platform does not pin. To understand
these pinning inconsistencies, we compare pinned domains on one platform that appear as not
pinned on the other. Apps that have pinned domains on one platform that do not appear as
unpinned on the other are marked inconclusive. For 20 apps pinning exclusively on Android,
we have 10 inconsistent and 10 inconclusive apps. For 22 apps pinning exclusively on iOS,
we have 7 inconsistent and 15 inconclusive apps.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 57

Pinned Android &

 Pinned iOS
% of Pinned Android

 Not Pinned on iOS
% of Pinned iOS

 Not Pinned on Android

Twitter

J.P.

TikTok

State

Seamless

Jungle

50% 50% 0%

25% 0% 75%

0% 100% 40%

0% 100% 0%

0% 100% 0%

0% 0% 100%

Figure 5.3: Inconsistent pinning in apps that pin on both platforms. We see that the first
two apps have overlapping pinned domains but are inconsistent as they pin domains on one
platform and not on the other.

We calculate the percentage of pinned domains that appear as not pinned on the other
platform and plot a heatmap of these in Figure 5.4. We see that 7 Android apps have
all traffic pinned on Android appearing as not pinned on iOS. All apps on iOS marked as
inconsistent (7) have all pinned domains appearing as not pinned on Android. Thus, for
both these sets of apps, we see that developers talk to common domains and pin them on
one platform while not pinning them on the other. This indicates that the pinning policies
of these apps is inconsistent and vary greatly based on the platform.

5.4.2 Pinning in Popular vs Random Apps

To understand the prevalence of pinning in popular and arbitrary apps (RQ2), we apply our
detection methodology on the Popular 1,000 and Random 1,000 datasets. For Android, we
find that 67 apps from Popular and 9 apps from Random use pinning. For iOS, we find 114
apps from Popular and 25 apps from Random use pinning. Thus, we see that pinning is
more prevalent on iOS as compared to Android.

To further understand the nature of pinning, specifically the parties involved in pinning
in an app, we dig deeper into the number of pinned connections and present the results
in Figure 5.5. Each bar on the x-axis represents an app that pins at least one domain,
split by dataset and platform. The y-axis shows the percentage of pinned and not pinned
domains that each app contacts in our tests. Blue represents pinned domains and green
represents not pinned domains. We divide domains contacted by an app into first and
third party, attributing each domain for an app using various points of information (whois
data, certificate subject names, etc.). We annotate each bar with first and third party data
marking first parties with dark and third parties with light colors.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 58

% of Pinned Android
 Not Pinned on iOS

Vudu

Calm

Trulia

Asana

Summoners

Angry

Credit

Yahoo

Firefox

Ghostery

100%

100%

100%

100%

100%

100%

67%

50%

25%

10%

(a) Android

% of Pinned iOS
 Not Pinned on Android

Allrecipes

Zero

Currency

Nimses

Priority

Zala

Gigworks

100%

100%

100%

100%

100%

100%

100%

(b) iOS

Figure 5.4: Inconsistent pinning in apps that pin exclusively on one platform. Each cell
represents the percentage of pinned domains on a platform found as not pinned on the
other. For 6 Android and 7 iOS apps, all pinned domains appear as not pinned on iOS and
Android respectively.

We see that almost all Android apps that contact first party domains also pin those domains
(28); with a single exception, Trulia. On the other hand, Android apps that pin third parties
(51) rarely pin all third parties (4); many apps pin some third parties and do not pin others
(47).

In contrast, for iOS we observe many cases where first parties are not pinned (18), often
when other first parties are pinned (6, dark blue and dark green on the same bar). Similar
to Android, many iOS apps pin all first party domains they contact (39). All iOS apps in
our dataset that pin third party connections also have other unpinned flows (99).

Based on the results in Figure 5.5, we observe that apps on both platforms almost always
have inconsistent pinning practices; domains (regardless of first or third party) are selec-
tively pinned, disregarding other traffic. Only 5 apps on Android (AskURA, Auto Kiosk,
Edmtrain, FFBaD, and Private Fostering Awareness) and 4 apps on iOS (Bank of America,
CandyCrush, Facebook, and Surge proxy) pin all domains they contact.

5.4.3 Certificate Analysis

In this section, we explore how certificate pinning is implemented in apps from the two
platforms (RQ4). To do this analysis, we gather certificate chains that are served at desti-
nations found to be pinning via dynamic analysis, as well as the certificates found in apps
using static analysis. Our static analysis techniques (1) search for raw certificates present

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 59

(a) Android Pinning

(b) iOS Pinning

Figure 5.5: Percentage of domains contacted that are pinned vs not pinned. Dark colors
represent first parties and light colors represent third parties. Each bar represents an app,
from the Popular and Random datasets for Android and iOS respectively.

in an app, and (2) attempt to fetch certificates associated with any SPKI hashes present in
the app. More specifically, our static analysis techniques discovered 966 unique certificates
across all apps present in raw format, as well as 170 unique certificates associated with 50%
of the unique pins from all apps. Using this static and dynamic certificate data, we shed
light on the following aspects of pinning implementations:

The Public Key Infrastructure (PKI) Used: Both Android and iOS come pre-bundled
with a default set of root CA certificates (the “default PKI”). We note that in the case of
Android, Original Equipment Manufacturers (OEMs) may add additional root certificates
in addition to those included in Android’s Open Source Project (AOSP) [15], [126]. Apps

Platform Default PKI Custom PKI Data Unavailable

Android 163 4 11
iOS 238 1 14

Table 5.6: Type of Public Key Infrastructure (PKI) used by pinned destinations. The
majority of pinning happens with certificates that tie to the default PKI.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 60

that wish to implement pinning can either pin certificates that still tie to the default PKI, or
use a “custom PKI” altogether by trusting their own root CA. To understand which of these
two mechanisms are prevalent in apps, we validate certificate chains served at all pinned
destinations using OpenSSL, configured with the latest version of Mozilla CA certificate
store [127]. Further, we manually review the ones OpenSSL could not validate to confirm
that they are indeed certificates tied to custom PKIs. Our results, summarized in Table 5.6,
reveal that the vast majority of pinning happens with default PKI in use.

Interestingly, we also find two cases, one per platform, where the destination presents
a self-signed certificate, rather than a chain. Although these destinations are reaping the
benefits of certificate pinning, they are likely missing the flexibility provided by a PKI. To
illustrate this, we note that the expiry dates for these certificates are 27 and 10 years. Due
to this long validity period, and because these certificates cannot be revoked (revocation
only applies to leaf certificates), any key compromise will mandate app updates to protect
connection security.

Pinning Root vs Leaf Certificate: Apps can choose to either pin the root or a leaf
certificate from the certificate chain, with the former offering more flexibility while the latter
offering more security. More specifically, pinning a leaf certificate protects the TLS connec-
tion from all CAs, including the issuer. But on the other hand, leaf certificates have shorter
expiry periods, and their keys are more likely to be rotated for security reasons. As such,
pinning leaf certificates demands more management, and can even render apps unusable if
they are not updated to reflect the latest leaf served from a destination.

To understand which type of certificates apps choose to pin, we cannot only rely on dynamic
data alone as this data reveals certificate chains presented at pinned destinations. Rather,
we need to investigate which certificate in the chain is likely pinned in an app’s code using
static analysis methods (see Section 5.3.2). In our analysis, we find ≈31% of pinning apps
across the two platforms, for which there is at least one certificate that appears in both static
and dynamic data (certificate matching is done in terms of the Common Name). We find
the majority of these certificates to be CAs (80/110), and the remaining (30/110) to be leaf
certificates.

Pinning Entire Certificate vs Its Key: As mentioned earlier, pinning leaf certificates
can lead to unavailability issues if the certificates are updated at the server but an outdated
app version is used, or if the developers forget to update pinned data on the app. There is
one exception since pinning can be done via a certificate’s Subject Public Key Information
(SPKI): app developers can update certificates on the servers as long as the certificate key
remains unchanged. Our data indicates that this is indeed how app developers implement
pinning. More specifically, out of the 30 leaf certificates that we found to be pinned in the
previous section, 24 of them were pinned via SPKI hashes. The remaining 6 leaf certificates
are present in their raw format in the apps, thus the developer could either pin the whole
certificate or just the public key. In 5 of these 6 cases, we notice that destinations serve
new leaf certificates during dynamic testing, which still result in pinned connections. This
suggests that app developers likely pinned public keys for these certificates. Although this
is good news for app usability, it also implies that certificate keys are reused which, in-turn,
defeats the purpose of certificate renewals.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 61

Platform Framework # apps

Android

Twitter 29
Braintree 27
Paypal 25

Perimeterx 9
MParticle 9

iOS

Amplitude 45
Stripe 34
Weibo 24

FraudForce 16
Adobe Creative Cloud 13

Table 5.7: Top 5 third-party frameworks that include certificate in Android and iOS. We
combine paths where certificates are found across apps and provide occurrences here.

Subverting Proper Certificate Validation: Because certificate pinning only protects
TLS connections against particular attacks, any pinning implementation still needs to con-
duct other certificate validation checks as defined in the TLS protocol (e.g., certificate subject
name match, date validation) to protect against other attacks [125]. To see if any apps that
use pinning bypass other standard certificate validation checks, we check for expiry dates
of certificates served at pinned destinations. We do not find any certificates that are ex-
pired but were considered valid by apps during dynamic analysis. As such, we do not find
any evidence of apps subverting normal certificate validation to only rely on pinning as the
protection mechanism.

Third-party Frameworks That Introduce Certificates: We finally look at the pack-
age code paths in apps where our static analysis detects certificates and/or pins to attribute
the behavior to first-party or third-party code. We observe that many of these paths ap-
pear in multiple apps. Upon manually investigating for the top common paths with cer-
tificates, and removing generic ones (such as config.json), we present the list of various
third-party frameworks that we identify to likely be introducing certificate pinning logic to
the apps in Table 5.7. For some of these, we are able to trace the pinning code in their
open-source repositories (e.g., Twitter SDK, MParticle SDK). We note that some of these
frameworks are also associated with popular pinned domains from our dynamic analysis
(e.g., config2.mparticle.com, *.perimeterx.net). Last, we believe that the end-points
that did not appear during our dynamic analysis are likely the ones for which we were unable
to automatically trigger the associated code paths. We particularly believe this to be the
case with Paypal that appears as a popular pinned domain in iOS, but never appears in
Android (except for the Paypal app). Overall, our analysis reveals social networks, payment
processing systems, and app analytics frameworks are the common sources of third-party
code that introduces certificate pinning in apps.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 62

Dataset
Bad Ciphers

Overall Pinning apps

Common
Android 8.35% 23.4%
iOS 93.39% 55.77%

Popular
Android 18.3% 1.49%
iOS 95.2% 46.09%

Random
Android 3.1% 0.0%
iOS 82.6% 52.94%

Table 5.8: Weak ciphers found in pinned vs all connections across all datasets for Android
and iOS. In general, we see pinning apps increase connection security in pinned connections
as they disable weak ciphers more often than other apps in the dataset. The Common
Android dataset (italics) is an exception to this trend supporting weak ciphers more often
than the rest of the dataset.

5.4.4 Connection Security

In this section, we explore whether apps that use pinning also adopt other security practices
in their pinned TLS connections (RQ5). More specifically, we check whether these TLS
connections advertise support for bad ciphersuites (e.g., DES, 3DES, RC4 or EXPORT)
that are susceptible to attacks. We compare their prevalence with connections from all apps
to contrast security practices of apps that implement pinning. Table 5.8 shows our results.
“Overall” shows the percent of all apps in a dataset that have at least one TLS connection
with bad ciphers, while “Pinning apps” shows the percent of apps with certificate pinning
that have at least one pinned TLS connection with bad ciphers.

Across all three iOS datasets, we see an increase in connection security of pinning con-
nections when compared to the overall connections in every set. Weak ciphers drop from
93.39% to 55.77% for Common iOS, 95.2% to 46.09% for Popular iOS, and 82.6% to 52.94%
for Random iOS datasets. However, trends in Android are more nuanced. For the Common
Android dataset, we see that pinning apps reduce connection security as the percentage of
bad ciphers in pinning apps is higher (23.4%) than that of the overall dataset (8.35%). But
for the Popular and Random Android datasets, we see an increase in connection security of
pinning connections as compared to other apps in those sets. Weak ciphers drop from 18.3%
to 1.49% for the Popular set and from 3.1% to 0.0% for the Random set. Thus, with the
exception of the Common Android dataset, our data suggests that pinning apps likely have
better connection security for their pinned connections when compared to non-pinning apps
on both Android and iOS.

5.4.5 PII in Pinned vs Non-Pinned Traffic

Since pinned TLS connections are harder to inspect by device users and auditors, in this
section we try to understand whether app developers implement pinning in order to hide
sensitive PII data collection, rather than to improve user security (RQ5). To do so, we
inspect PII prevalence in decrypted TLS connections for all apps that implement pinning

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 63

Platform PII Pinned Non-Pinned

iOS

Ad. ID* 25.85 % 18.06 %
City 0 % 0.94 %
State 0 % 0.31 %

Lat./Lon. 0 % 0.04 %

Android

Ad. ID 25.74 % 19.96 %
Email 0.99 % 0.52 %
State 0.99 % 1.12 %
City 0 % 0.45 %

Table 5.9: PII found in pinned connections, and how the prevalence differs from non-pinned
TLS connections. (*) marks results that are statistically significant.

using the methodology described in 5.3.5.

Our results are presented in Table 5.9 and reveal what PII is found in pinned traffic,
and how does the prevalence differs for non-pinned traffic. Since the number of non-pinned
destinations is orders of magnitude more than pinned ones on both platforms, we cannot
simply compare the PII prevalence across the two categories. As such, we highlight the results
where differences in PII prevalence are statistically significant (found using Chi-square test
of independence with a p-value ¡ 0.05). We find that advertisement ID is the key identifier
that appears substantially in both pinned and non-pinned traffic. Although it appears more
in pinned traffic, the differences we see are statistically significant in only one platform. We
do not find substantial presence of other identifiers that we checked for. As such, our results
suggest that app developers likely do not use pinning as a method to hide PII data collection.

5.4.6 Limitations

We discuss limitations of our methodology here. We also claim to find a lower bound of
certificate pinning, which remains unaffected by these limitations.

Embedded Certificates We search for certificates embedded in apps, but could miss
certificate for various reasons, such as apps using obfuscated code, reconstructing certificates
at run time, storing certificates in non-standard formats, etc.

Partial Observation Our dynamic testing is limited; we do not explore all code paths of
an app. Thus, we miss certificate pinning that is not triggered during our testing. Similarly,
we do not have ground-truth about all of the PII that apps collect. Our analysis instead is
limited a subset of PII that we could infer automatically in network traffic.

iOS Background Traffic As discussed in Section 5.3.6, we exclude iOS “associated”
domains from our pinning calculations to avoid introducing noise due to OS-initiated back-
ground traffic. This may lead to an underestimation of pinning on iOS.

Limited App Interaction Though we explored automated interactions with apps, we
found they had a limited impact on results. We did not log into or interact with apps after
doing so. Thus, we potentially miss pinned connections in such scenarios.

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 64

Dataset Given that the dataset is collected from official stores, we do not capture the
prevalence of pinning outside of official channels. Similarly, we do not cover prevalence for
paid apps. Lastly, we tested a relatively modest number of apps (≈3,000), largely due to
scalability constraints for dynamic testing. While we partially mitigate this by selecting
different collections of apps (Popular, Random), our study represents only a sample of all
available apps.

5.5 Discussion

Pinning Inconsistencies: We introduce the concept of inconsistent and consistent pinning
for the Common dataset of apps. Apps from the Common dataset are developed and main-
tained by the same entity (developer, company, etc.). Thus, we expect the pinning policies
to be consistent across these two mobile platforms. We find that this is rarely the case,
with less than half the apps having completely consistent pinning. This indicates that the
security practices of the same entity are different on Android and iOS, and is an interesting
finding as it is unexpected.

We argue that pinning consistently, across platforms, is good practice. Although codebases
for various platforms might vary, the reasoning behind pinning should be the same. We can
only speculate about the reasons for such differences, e.g., they could be due to different
pinning APIs across OSes causing confusion/inconsistency (e.g., as found by Oltrogge et al.
[124]), or due to developers using different threat models for iOS compared to Android.

Developer Survey: Our work revealed practices that cannot be explained by our dataset
alone. By surveying developers who use pinning, we can better understand the reasoning
behind pinning, including why there are inconsistencies between Android and iOS. Such
a survey can also help the community to better understand deployment/maintenance re-
quirements, and compile a better set of guidelines for developers that wish to use certificate
pinning.

App Exploration: An orthogonal problem we encountered during our study was app
exploration. We tested random automated interactions with apps but found no significant
change in traffic generated by the apps with or without these interactions. Developing a
tool that automatically interacts with apps (signing up, logging in etc.) would be useful for
various future studies.

Pinning Circumvention: In this work we used existing techniques to circumvent pinning
to study data that is protected behind pinned connections. The number of connections
we circumvented was limited (≈50% destinations). We leave it to future work to develop
techniques that can circumvent a larger number of pinned connections, enabling studies of
data protected by pinning.

Ethical Considerations: Our work does not entail human subject research. All tests
were conducted using accounts set up for the sole purpose of our testing. Our methodology
requires crawling app stores, and we used low crawling rates with accounts that are easily
identified as being used for research purposes (in case the platforms took notice of our crawls
and needed to contact us). Similarly, while crawling the AlternativeTo website, we limited

CHAPTER 5. CERTIFICATE PINNING IN MOBILE APPLICATIONS 65

our crawler to request 1 page/second and included our contact details in the User-Agent
field. We received no complaints about our crawls, nor were any of our accounts disabled or
rate limited in any way.

5.6 Conclusion

In this work, we conducted the first large-scale study of certificate pinning across both
Android and iOS apps. We found significantly higher prevalence of pinning than in prior
studies, with at least 11% of popular iOS apps and 6.7% of popular Android apps doing so.
Interestingly, we found that pinning behavior varies significantly across platforms, even for
the same app. Based on our analysis, pinning is commonly added by third-party libraries
and is likely deployed for the protection of financial data, with little evidence that pinning
is used primarily to protect (non-credential) personal data. In future work, we will explore
how results change with more app interactions, both automated and manual.

To support reproducibility and facilitate further research in the area, we make our dataset
and code publicly available at: https://github.com/NEU-SNS/app-tls-pinning.

https://github.com/NEU-SNS/app-tls-pinning

Chapter 6

Testing TLS Certificate Validation
Using Generative Language Models

The sheer complexity of TLS spec makes it impractical for application developers to imple-
ment the protocol from scratch. Rather, a large number of open-source TLS implementations
(e.g., OpenSSL, MatrixSSL, MbedTLS) exist and can be integrated directly in applications.
As is the case with any computer software, ensuring that a TLS implementation follows the
spec correctly and remains bug-free is hard to achieve. Unfortunately, programming bugs
in implementations are regularly found, leading to various security issues such as denial-of-
service vulnerabilities or potential leaks of user data from TLS-supporting servers.

Prior research (e.g., [19]–[21]) has leveraged an interesting insight to systematically find
bugs in the certificate validation logic of TLS implementations, an essential step in the
protocol to ensure server authenticity. Since multiple implementations exist and follow the
same protocol spec, prior works use them as cross-referencing oracles to form a differential
testing framework: given an input certificate, these works compare the validation outcomes
of multiple libraries to find discrepancies (where one implementation accepts a certificate
while another rejects). As these implementation differences should generally not exist, prior
works find many of these discrepancies to reflect bugs and vulnerabilities in implementations.

Several different techniques exist to generate the corpus of test certificates to use in differ-
ential testing. For instance, randomly combining and mutating parts of real certificates [19],
using code coverage statistics to guide generation [20], and modelling certificate parameters
to use combinatorial methods [21]. Inspired by the prior work, we identify a new oppor-
tunity for differential testing: generative language models based on neural networks (e.g.,
ChatGPT), which are popular today for applications such as generating content, writing
code and conversing with users.

In this chapter, we present a novel approach to generate synthetic TLS certificates for dif-
ferential testing using generative language models. We demonstrate how these models are able
to (i) learn X.509 representations for TLS certificates, and (ii) generate new certificates that
(usually) conform to the protocol standard but produce diverse behavior during the certificate
validation process for several TLS implementations. Our results show that these synthetic
certificates produce an order of magnitude more “distinct discrepancies” than baseline during

66

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 67

differential testing, and reveal a wide range of previously unobserved and interesting behavior
with security implications.

6.1 Background and Motivation

In this section, we provide the necessary background for TLS and differential testing, how it
relates to language models, and how we use these models as blackbox tools in this work.

TLS Certificates A crucial part of TLS connection establishment is the validation of one
or more “certificates” that contain cryptographic information for a host (e.g., the public key
for google.com). Clients must validate these certificates according to the protocol specifica-
tion (spec) that, among numerous other things, checks if a certificate is authentic based on
its signature from a trusted Certificate Authority (CA), unexpired at the time of checking,
and is indeed issued for the domain client wants to connect to.

The TLS spec is complex and defined semi-formally in various RFCs released over the past
two decades [128], [129]. The latest protocol version is TLS 1.3, and any version below TLS
1.2 is considered unsafe today. TLS certificates are defined in a standard known as “X.509”,
which itself is based on an interface description language “ASN.1”. Standards defined in
ASN.1 can be efficiently serialized/deserialized in a cross-platform way. TLS certificates
are usually encoded in a binary “DER” format (and stored/transferred in base64-encoded
“PEM” strings with ASCII characters). An example TLS certificate in this encoding is
present in Listing 6.1. The X.509 standard has also undergone various updates, with version
3 being the most commonly used today, and is defined in RFC 5280 [23].

A large number of TLS implementations conform to the TLS spec and are integrated into
other software. Unfortunately, due to the complexity of TLS protocol and correspondingly
high chance of bugs during software development, vulnerabilities in TLS implementations
are common (e.g., [130], [131]). As a result, TLS has been the target of many automated
efforts to discover and address such flaws in implementations.

Differential Testing While there are numerous works that assess TLS implementations,
here we focus on the work by Brubaker et al. [19] that introduced the idea of differential
testing in the context of certificate validation (an extended discussion of related works is
in Chapter 2). The authors identified two fundamental requirements for systematically
testing certificate validation logic in implementations: (i) generating a variety of valid test
certificates to find bugs in rarely triggered code paths, and (ii) determining if a certificate
validation result from an implementation is correct. The authors proposed a novel solution to
meet these requirements by (i) randomly combining and mutating parts of real certificates
to automatically generate a large synthetic corpus of certificates (Frankencerts) that are
syntactically valid but may violate some of the semantic constraints, and (ii) using multiple
TLS libraries as cross-referencing oracles to find bugs. For the latter, the key idea is that
since TLS libraries attempt to conform to the same protocol spec, a “discrepancy” (where
one library rejects a certificate but another does not) can indicate a potential issue in either
of the libraries. The authors indeed observed that the majority of discrepancies found in
their work reflected bugs and security issues in TLS implementations. While the technique

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 68

helped significantly improve TLS implementations, the randomness in the technique means
it can take an arbitrarily long time to capture all bugs in a program.

Software Security and Language Models The core insight in our work is that since
TLS certificates are defined in X.509 format, we can use a suitable compiler to deserialize the
certificates from a memory-efficient DER/PEM format into a verbose textual format (Listing
6.2). An interesting side-effect of such conversion is that the textual format is suitable for
language models (detailed in next section). These models can learn a representation of the
training data (e.g., a corpus of TLS certificates), and one can generate new examples by
sampling from the representation (e.g., to generate a synthetic certificate). Interestingly,
these models may learn representations that are not perfect, resulting in sampled outputs
that may differ from expectations. In the context of differential testing and fuzzing, such
imperfect representations can actually help find bugs. That is because synthetic certificates
that deviate slightly from the TLS spec, for example, can trigger rarely tested code paths,
increasing the likelihood of finding bugs.

To the best of our knowledge, language models have not been used in the context of
generating synthetic TLS certificates before, and have had limited use in software security
so far. We believe Godefroid et al. [132] are the first to use modern language models for
the purposes of fuzzing. The authors trained a model for fuzzing the complex PDF input
format. While they were able to successfully learn a usable representation that can generate
novel PDF objects, they could only find one stack-overflow bug. Notably, the authors did
not rely on differential testing but used AppVerifier, a low-cost runtime monitoring tool,
to catch memory bugs. Regardless, the authors found the technique promising in general
and provided an early discussion on how the model training process influences quality of
fuzzing (more details in Section 6.3). Our work can be seen as an extension to theirs—we
complement the use of language models with differential testing, and do so in the domain of
TLS certificate validation. Note that work by Sablotny et al. [133] is another such extension
to use language models to generate synthetic HTML tags and fuzz web browsers, but they
also did not rely on differential testing and did not find any bugs.

Listing 6.1: A TLS certificate shown in PEM format

-----BEGIN CERTIFICATE-----

MIIEHTCCAwWgAwIBAgIQToEtioJl4AsC7j41Akb...

...NBIVBAMTHkNPTU9ETyBDZXJ0aWZpY2F0aW9uIEF1

-----END CERTIFICATE-----

Listing 6.2: A TLS certificate shown in ASN.1 textual format

{

toBeSigned {

version 2 -- v3 --,

serialNumber 104350513648249232941998508985834464573,

signature {

algorithm {1 2 840 113549 1 1 5}

},

issuer rdnSequence : {

{

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 69

{

type {2 5 4 6} -- id-at-countryName --,

value ’4742’H

}

},

...

validity {

notBefore utcTime : "061201000000Z" -- Fri Dec 1 00:00:00 2006 --,

notAfter utcTime : "291231235959Z" -- Mon Dec 31 23:59:59 2029 --

},

...

extensions {

{

extnId {2 5 29 14} -- id-ce-subjectKeyIdentifier --,

extnValue ’04140B58E58BC64C1537A440A930A921BE47365A56FF’H

}

...

}

}

}

Generative Language Models We now discuss language models in more detail and
how to use them as blackbox tools. Generative language models based on neural networks
have received widespread attention in the last few years. The human-like text generator
ChatGPT [134], released in November 2022, accumulated 100 million monthly active users
within just two months [135]. That is because of the remarkable performance of these purely
language models on a variety of tasks such as writing code, solving mathematical questions
and answering user questions.

In simple terms, generative language models learn to predict a sequence of tokens when
given an input sequence. A token can represent one single character, but even multiple
characters or a unit in some domain other than natural language (e.g., a musical note).
This generalizability is what makes them extremely powerful, and enables us to use off-the-
shelf modern language models as blackbox tools in this work. It is notable that by simply
optimizing performance on a token prediction task, a (well-trained) model can learn a useful
representation of what the training dataset expresses (e.g., how a joke is written in English).
The representation can then be sampled from for different tasks (e.g., generating a new joke
using ”knock knock” as an input sequence).

We use two types of generative language models in this work; Generative pre-trained
transformers (GPT), and, Recurrent neural networks (RNNs). We rely on these two because
GPTs are the current state-of-the-art, and RNNs were the dominant sequence prediction
models in the last two decades with widespread impact [136]. RNNs were also used in the
prior study closely related to our work (mentioned in 6.1). For additional context, RNNs
originated in 1986, while the more commonly used “LSTM” variant appeared in 1997. GPTs
are comparatively recent, and rely on a “Transformers” architecture that was introduced in
2017. GPTs are part of what is colloquially known as “large language models” (LLMs) due
to their massive scale of trainable model parameters, datasets, and compute requirements.

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 70

Output
State

Input
State

Blackbox
RNN Model

Input
Token

Output
Token

B R

E

E

A

A

A → 0.01
B → 0.01
C → 0.01
D → 0.40

...
K → 0.38

...

=

starting
state

tokens provided
by the user

tokens obtained
from prior iterations

next token

(a) RNN

Blackbox
GPT Model

B R

tokens provided
by the user

Input
Tokens

Output
Tokens E A

A → 0.01
B → 0.01
C → 0.01
D → 0.40

...
K → 0.38

...

= next token

(b) GPT

Figure 6.1: An abstraction for the language model architectures used in this work. A pipeline
on how to use each model for generating text is on the right.

We present an abstraction of these models in Figure 6.1 that is suitable for understanding
them as blackbox tools in this work. As security researchers, our approach is to intentionally
rely on off-the-shelf language models with our basic machine learning skills, rather than to
create custom model architectures specialized for the purposes of software security.

We now describe how these architectures can be used. As a blackbox, RNNs expect a
single input token and an input “state”, and produce an output token and state. They are
used in a sequential manner to predict token sequences of arbitrary length, with the key
insight of using the output token and state at one step, as input to the subsequent step
for predicting the next token. As such, the state can be used by the RNN to keep track of
historical information and make token predictions at each step based on the entire sequence
from prior steps. A pipeline of such use is present in Figure 6.1a. On the other hand, GPTs
work on limited-length sequences and can be seeded with an input sequence of tokens to
get an output sequence. A pipeline of such use is present in Figure 6.1b. The lack of state
maintenance in GPT makes them much easier to train in parallel, as opposed to RNNs.
It also means that GPTs are able to explicitly consider all prior input tokens. These two
features, in practice, make GPTs much efficient than RNNs. Note that for both an RNN and
GPT, the output tokens are actually sampled from a probability distribution (i.e., the models
output a score for each token that can be used as a probability distribution, rather than a
single token). The sampling strategy determines how creative or constrained outputs from
a generative model get to be. It is also common to select the token with highest probability
as the output token.

These language models are trained on a corpus of textual data. It is particularly common
to use a GPT pre-trained on a very large corpus of generic data with extensive compute,
and to only “fine-tune” it with a small set of data for the task at hand. The process of
fine-tuning means model parameters can be updated for the new training data, but do not
need to be bootstrapped from scratch. Intuitively, fine-tuning helps because a pre-trained
model can quickly learn a new task if it has already acquired extensive knowledge for some
overarching problem (e.g., sequence prediction).

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 71

Table 6.1: Overview of certificate datasets used for training language models.

Dataset Total certificates
Versions Extensions Validity

v1 v3 others
Per certificate

(median)
Names
(unique)

Values
(unique)

notBefore year
(median)

notAfter year
(median)

IPv4 100000 1790 98207 3 8 28 92630 2019 2025
2022 100000 11893 88102 5 9 31 110916 2021 2022

Balanced 100000 50036 49944 20 0 29 85480 2020 2023

6.2 Goals

While the ultimate goal of our work is to find new security issues in TLS implementations,
we measure progress to our goal by monitoring the following three statistics, in increasing
order of priority; (i) code coverage, as it generally reflects the ability to find bugs in different
sections of a program, (i) number of unique discrepancies, as they should generally not exist
in spec-conforming implementations, and (iii) software bugs, as they can often be exploited
to cause security issues. With this work we aim to answer the following research questions
(RQs):

RQ1: How can we use language models to learn a representation of X.509 TLS certificates?

RQ2: How can we generate diverse certificates from a learned representation to discover
large numbers of discrepancies?

RQ3: Do these synthetic certificates help uncover new bugs and security issues through
differential testing?

RQ4: How does certificate testing using language models compare with prior work?

6.3 Methodology

In this section, we describe the datasets, language models and the differential testing pipeline
we use in our work. We start with a brief overview of our methodological approach.

Parameter selection Training modern machine learning models is a particularly param-
eterized process. The final system performance not only depends on the choice of training
dataset and model architecture, but is also influenced by a wide range of other “hyperparam-
eters” used (e.g., learning rate, number of layers, size of a training batch). Typically when
training these models, the learning goal is sufficiently expressed through the training “loss
function” used in the optimization process. Thus, the parameters are empirically selected
to get a trained model with the smallest loss value, while the search space of parameters is
only restricted on practical concerns such as time.

Interestingly, for the purposes of fuzzing, we do not know a priori how optimizing the loss
function relates to the generation of synthetic certificates that trigger more bugs or discover
new security issues. In general, a loss function specific to finding bugs cannot be designed
either, since the set of all security issues in a program is unknown.

In more detail, Godefroid et al. [132] are the first to highlight an inherent tension between

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 72

learning and fuzzing – the former optimizes for generative outputs that conform to some
inherent structure in the training data, while the latter exploits inputs that break the struc-
ture to reach bug-inducing code paths. Note that differential testing is able to find bugs even
through well-formed software inputs, so it is not an inherent conflict in our case. But we
still cannot assume whether a state-of-the-art model architecture trained extensively, or a
simpler model trained briefly would be more suitable for the purposes of differential testing.

Given the open question of how to train and tune generative models and the large pa-
rameter space to explore, we rely on the following heuristic approaches. First, we train a
variety of models (12 in total, based on 3 training datasets and 4 models detailed in the next
section) using default and/or common-sense parameters (e.g., a learning rate not too high or
too low). Second, we evaluate how these different models help us achieve goals in this work
and, for scalability reasons, use only the best among them for in-depth experiments. As
such, we do not claim that any particular model is best in general, but only how it compares
to the different techniques we tried.

6.3.1 Certificate Datasets

Our approach relies on an input set of TLS certificates to train the language models. The
models, in turn, are designed to learn the representation of a certificate based on the features
present in the training set. For instance, if we train the models using only v1 certificates,
the models will naturally be incapable of generating certificates with TLS extensions (only
available in v3 certificates). To generate synthetic certificates with a diverse range of features,
we use three distinct datasets for training:

IPv4 (n = 100,000): Certificates crawled from websites by randomly searching the
IPv4 space for TLS-enabled hosts (until the desired number of certificates were found). The
crawl was performed in February 2022. This dataset represents certificates typically found
online. A limitation is that we could not specify the hostnames during this crawl and, as such,
may obtain certificates that are less commonly seen by end users (i.e., “default certificates”
instead of domain-specific ones).

2022 (n = 100,000): Certificates deployed in the year 2022 and obtained from the
Rapid7[137] scans. This dataset represents certificates that are recently issued, and are thus
expected to contain the latest TLS features with more prevalence than the previous dataset
(as certificates can be long lived, and websites do not necessarily need to update them).

Balanced (n = 100,000): A mix of v3 and v1 certificates sampled from the Rapid7
scans. The sampling was done in a way that v3 and v1 certs are equally prevalent in the
dataset.

An overview of the features contained in these datasets is present in Table 6.1. The diversity
in these datasets can be observed by looking at the distribution of different features (e.g.,
expiry dates).

We cannot use raw TLS certificates for training purposes because they are encoded in the
compact PEM data format (Listing 6.1). Instead, we rely on the PyCrate[138] framework
to decode them into “ASN.1 textual format” that is suitable for language models (Listing

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 73

6.2) due to the verbosity afforded by that format. To facilitate model training, one change
we make in the certificate training data is that we remove the public key and signature
fields from the certificates. We do so as these are special fields that need to be calculated
with cryptographic functions, and the language models cannot learn these functions without
the appropriate information (e.g., corresponding private key). Note that synthetic TLS
certificates with invalid signatures will likely provide limited value in finding bugs in a TLS
implementation.

6.3.2 Language Models

As discussed earlier, we use the following two types of language models in this work:

RNNs We use the open-source Char-RNN-PyTorch implementation[139] with an LSTM
variant, as done in prior work [132]. We train two 3-layer models from scratch, one with 256
hidden neurons per layer (henceforth called “RNN-Small”, ≈1 million trainable parameters
in total) and the other with 1024 (“RNN-Medium”, ≈10 million trainable parameters). Note
that the implementation treats each character as a token.

GPTs We use the open-source gpt-neo-125m[140] implementation, which is inspired by
the GPT-3 architecture but with ≈125 million trainable parameters (as opposed to ≈1 billion
for the base GPT-3 model) for faster training. Our results did not indicate a need to train
larger models as we will discuss in the results section. We fine-tune one pre-trained model
(“GPT-Finetuned”) and train another from scratch (“GPT”) using our datasets. For both
models, the maximum sequence length is set to be 2048 tokens, the default for GPT-Neo.

In summary, we have 4 models with sizes that can differ by two orders of magnitude. Note
that larger models typically lead to better performance. Using the previously described 3
datasets, we train 12 models in total. For each training certificate instance decoded into
an ASN.1 text, we add a prefix string at its start and a suffix string at its end (e.g, “BE-
GINCERTIFICATE” and “ENDCERTIFICATE). We train the models end-to-end on each
certificate instance.

Generating certificates We simply use the prefix as input to a trained model and
generate an output string that ends with the specified suffix (we also set a max output
length limit in case the suffix is never produced). Because the models are trained on ASN.1
inputs, the outputs are expected to represent the ASN.1 language. As such, we encode each
model output into the PEM format expected by TLS libraries. Note that the certificate
outputs may not be well-formed ASN.1 or ASN.1 compatible with the X.509 certificate
format, so the conversion is not guaranteed to succeed. We call each well-formatted PEM
instance a “synthetic certificate”.

Once we obtain a certificate, we rely on the following three approaches for using it during
differential testing:

Leaf Using the synthetic certificate directly with a dummy public key and dummy sig-
nature.

Leaf+CA Using a custom (manually-trusted) v3 root CA as the issuer CA, and attach

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 74

Figure 6.2: How certificate validity is influenced by the date of testing. Date used in our
methodology is highlighted in red (June 15, 2022).

Library Version
OpenSSL 1.1.1t
LibreSSL 3.6.2
GnuTLS 3.6.16
MbedTLS 3.3.0
MatrixSSL 4.6.0

Table 6.2: TLS libraries in our differential testing framework. All versions reflect the latest
available on February 15th, 2023.

its valid signature.

Leaf+CA+Intermediate Chaining multiple synthetic certificates together to produce a
valid chain with one root (manually trusted), one leaf, and X >= 1 intermediate certificates.

6.3.3 Differential Testing Framework

After generating synthetic certificates through language models, we use them to test TLS
libraries through our differential testing framework. In a nutshell, the framework takes a
certificate as input, executes it against the validation code of multiple TLS libraries, and
compares their output against each other to find discrepancy-producing certificates.

In more detail, the certificate validation output from each library is categorized as either
success or failure (based on the program exit status code). A discrepancy is when at least
one library differs in validation outcome from others. We test 5 popular open-source TLS
libraries (Table 6.2) (our framework can easily be extended to support more.) With 5
libraries, the synthetic certificates can generate a maximum possible of 30 “distinct (sets
of) discrepancies” (25 possible outcomes, minus 2 for all success/all failure outcomes). In
addition, we collect any outputs to stdout and stderr streams alongside code coverage data

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 75

Table 6.3: Overview of PEM certificates obtained from the language models. Each model
was used to output 100,000 strings.

Training Data Model Valid certificates
Versions Extensions Validity

v1 v3 others
Per certificate

(median)
Names
(unique)

Values
(unique)

notBefore year
(median)

notAfter year
(median)

RNN-Small 35310 678 34631 1 7 24 43397 2020 2024
IPv4 RNN-Medium 97151 1897 95252 3 7 35 107105 2020 2025

GPT-Finetuned 82081 1258 80818 5 7 37 33010 2016 2027
GPT 74431 369 74062 0 7 21 25719 2015 2027

RNN-Small 69953 20650 49301 2 3 18 106509 2021 2022
2022 RNN-Medium 34886 7304 27580 2 3 19 46710 2021 2024

GPT-Finetuned 74215 23356 50847 12 1 42 71693 2021 2024
GPT 44468 12567 31897 4 3 19 64566 2021 2024

RNN-Small 938 711 227 0 0 12 675 2020 2023
Balanced RNN-Medium 95965 65833 30130 2 0 27 60235 2020 2023

GPT-Finetuned 81295 61581 19710 4 0 39 28557 2020 2023
GPT 64254 47050 17204 0 0 17 35101 2020 2023

using GCOV.1 We execute certificate validation logic in these libraries without domain name
validation, as our certificate generation process is not constrained to any particular domain.

Certificate validity periods (e.g., whether a certificate is expired or valid at the time of
testing) can significantly affect the flow of code executed during differential testing. For
consistency, we need to validate all certificates using the same date and time. To achieve
this, we rely on libfaketime[141] to patch low-level system libraries and simulate an artificial
time for our experiments.

There is a trade-off to be made when deciding the particular time to use. If we choose
a date on which a certificate is invalid (expired or yet-to-be-valid), it should result in less
code execution in a library as the certificate might be rejected without validation of any
other details (assuming time validity checks are performed earlier by a library than other
checks). On the other hand, a certificate that is valid for the current time may result in
more code execution, but not necessarily with the code paths that are rarely triggered and
that may expose subtle bugs. To understand the trade-off better, we take a representative
sample of certificates generated from our language models and show how the date chosen
affects certificate validity (Figure 6.2). Given that there is no a priori way to determine
the optimal date to use for differential testing, we use a heuristic based on the intuition
that exploring significantly more code paths in general, but not completely ignoring rarely
triggered paths, should help us uncover substantial numbers of discrepancies. We thus use
June 15, 2022 in this work as this timestamp lets a significant fraction, but not all, of the
synthetic certificates to remain valid during testing.

6.4 Results

We present our results in three phases of evaluation. In Section 6.4.1, we evaluate the perfor-
mance of the 12 trained language models in terms of code coverage and unique discrepancies.
In Section 6.4.2, we conduct additional experiments to understand how certificate diversity
influence the discovery of discrepancies. Based on what we learn from these two sections, we

1Code coverage data is collected as aggregate from all certificate validations for a particular dataset.

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 76

choose a final model to generate synthetic certificates, then we use these certificates to test
against multiple TLS libraries and we discuss discrepancies in terms of their behavior and
implications on software security in Section 6.4.3.

We begin by evaluating if our trained language models generate valid X.509 TLS certificates
(RQ1). Using the prefix string as input, we obtain 100,000 output strings from each model
that end with the desired suffix (we find the suffix 99% of the times within the max output
length). We then encode these model outputs into PEM-formatted certificates with varying
success.

Table 6.3 provides an overview of the synthetic certificates obtained from the models. A
key observation we make is that the models, in general, generate valid PEM certificates. The
only exception is the RNN-Small model trained on the Balanced dataset, which produces
valid X.509 outputs only 0.938% of the time. On the other hand, the RNN-Medium model
trained on the IPv4 dataset produces the largest number of valid outputs among all models
(97.151%).

Further, these models learn distinctive X.509 representations, which we summarize in
the table in terms of the diversity in version and extension information present in their
certificates. While the models trained on IPv4 and 2022 datasets produce significantly more
v3 certificates, that is not the case with models trained on the Balanced dataset. In fact,
while the Balanced training dataset had an equal proportion of v1 and v3 certificates, the
models trained on this dataset produce more v1 certificates. Interestingly, these Balanced
models have learned that v1 certificates do not have extensions, alluded by the fact that the
median number of extensions is zero for these cases.

Finally, the models learn not only constraints about the X.509 format, but also other
constraints from real-world certificate training data. For instance, the median notAfter
field (representing expiry date) is ahead of the notBefore field (typically representing the
certificate issuance date) for certificates from all models.

6.4.1 Discrepancies and Code Coverage

We now use synthetic certificates in the differential testing framework. We find that no
discrepancies are produced when using the certificates directly with TLS libraries (Leaf).
On the other hand, when we provide a valid chain (Leaf+CA or Leaf+Intermediate+CA), we
trigger a large number of discrepancies. This means all libraries mark a synthetic certificate
as invalid when not signed by a valid CA. When focusing on the other two methods, they
each find a similar set of discrepancies. For the sake of simplicity, we present results in this
section using only Leaf+CA.

Figure 6.3 shows the performance of these models on two axes – code covered and unique
discrepancies triggered. In addition to the 12 models, we include two benchmarks for refer-
ence: certificates from one of the training dataset sources (IPv4) and certificates generated
using the methodology of prior work (Frankencerts).

The first key observation is that the all language models trigger significantly more discrep-
ancies (median 17.5) than the two benchmarks (4 and 5 discrepancies respectively), while
the training dataset explores more code. We speculate the reason is that real-world certifi-

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 77

Figure 6.3: Performance of language models in triggering discrepancies and exploring certifi-
cate validation code. The models trigger significantly more discrepancies than benchmarks,
despite covering less code than real-world certificates.

cates exercise more functionality in TLS libraries as they presumably conform more closely
to the TLS spec. Note that exercising more code paths is not the same as exercising new
code paths (e.g., code paths that may trigger bugs). While the code coverage may seem low
across all datasets, it is because only a small portion of code in a TLS library deals with
certificate validation.

Second, we note that none of the model architectures or training datasets optimize both
code coverage and unique discrepancies. The various models that trigger large numbers of
discrepancies do not necessarily use the same architecture, nor are they trained on the same
dataset. In addition, the three models that produce the most discrepancies (20) may actually
reflect similar type of discrepancies. On the other hand, models with fewer discrepancies
might work as an ensemble to achieve an overall larger number of unique discrepancies.

To understand this further, Figure 6.4 uses a heat map to visualize the number of certifi-
cates that trigger each type of discrepancy, for each model. The number of unique discrep-
ancies discovered across all synthetic and benchmark certificates is 23 (out of a maximum
possible of 30). This means none of the individual models find all types of observed discrep-
ancies. Three models find one discrepancy each that are not found elsewhere. Interestingly, a
small number of certificates are responsible for these rare discrepancies. On the other hand,
discrepancies found by a large number of models tend to be triggered by a larger number of
certificates as well.

Our key takeaway is that all trained models help us find discrepancies significantly more
than the benchmarks, but we do not have evidence to call any particular model architecture
best among all.

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 78

Figure 6.4: Exploring the discrepancy producing certificates. Each cell represents the number
of certificates from a dataset (row) that trigger discrepancy of a particular type (column).
Rows 1 and 2 represent benchmarks, and 3 onwards represent certificates generated by
language models. The synthetic certificates trigger significantly more discrepancies than
benchmarks, and mostly overlap on the type of discrepancies.

6.4.2 Certificate Diversity

We now evaluate the extent to which we can control the diversity in our synthetic certificates,
and how this in turn leads to better code coverage and/or unique discrepancies observed
(RQ2). Our intuition is that diverse TLS certificates (e.g., via an unexpected combination
of extensions) may help trigger new discrepancies by executing rarely-tested code paths.
Two simple ways to make a set of synthetic certificates more diverse is by (a) changing
the sampling strategy used when generating certificates, and, (b) increasing the number of
certificates obtained from a model. For practical purposes, we study these techniques on a
single model type and training dataset. While there is no single “best” model as discussed
in the previous section, we use IPv4/RNN-Medium because this model produced the most
unique discrepancies. In addition, it has a moderate size in terms of trainable parameters
as compared to the other two models with similar numbers of discrepancies. This makes the
model more powerful than 2022/RNN-Small yet significantly faster to train than 2022/GPT-
Finetuned.

Sampling strategy During certificate generation, we sample from a probability distribu-
tion to get output tokens. For instance, if the model outputs a distribution (0.5, 0.4, 0.1) for
the three tokens a, b and c, the token “a” is selected as output with a probability of 50%.
Interestingly, we can use a simple technique to sample in a way that makes outputs more
diverse from, or constrained to, the representation learned by a model. Language models can

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 79

Figure 6.5: Trade-off between sampling strategy and discrepancies found. Sampling in a
conservative way (left) makes more synthetic certificates valid, but they find less discrepan-
cies.

be tuned with a hyperparameter called “Temperature” that controls how uniform the token
probability distribution is. For instance, with Temperature = 2.5, the earlier distribution is
scaled to (0.36, 0.34, 0.30) and with Temperature = 0.1 it is scaled to (0.72, 0.27, 0.01).

A more uniform sampling strategy will introduce diversity to synthetic certificates (by
sampling different tokens), at the cost of making some certificates invalid (if some tokens
violate ASN.1 syntax). To understand this trade-off, we test with multiple Temperature
values and plot our results in Figure 6.5. For each test, we generate 10,000 output strings,
which are then encoded to PEM certificates. Note that by default, Temperature = 1 is used
(i.e., results in the previous section). As expected, a low value leads to a large number of
model outputs being encoded as valid TLS certificates. On the other hand, increasing the
Temperature helps discover more discrepancies but only up to a certain point, after which
most certificates become invalid. Based on these empirical results, the best value to find
most discrepancies is Temperature = 1.5.

Number of certificates Because we use each model to generate a maximum possible
of 100,000 certificates, an interesting question is whether these models can find more unique
discrepancies when given more time. To understand this potential, Figure 6.6 shows the
number of certificates from a model (on average) that trigger a certain number of discrep-
ancies. The grey dashed region represents certificates that did not help in finding any new
discrepancies.

We observe that two-thirds of the discrepancies are produced by just 20,000 synthetic
certificates. In addition, the arc of the curve indicates diminishing returns in terms of new
discrepancies when using more certificates. Nonetheless, there is a nonzero likelihood of
finding at least some new discrepancies with additional certificates beyond 20,000, so we use
a larger sample in our experiments in the next section.

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 80

Figure 6.6: Number of certificates needed to observe new discrepancies. Majority of the
unique discrepancies are observed with just 20,000 synthetic certificates.

6.4.3 Security Implications

Based on what we learned from the previous section, we use our trained IPv4/RNN-Medium
model with Temperature=1.5 to generate 1M certificates. We use results from this experi-
ment to discuss the behavioral and security implications of our findings. Interestingly, this
certificate set triggers all 23 unique discrepancies reflected in Figure 6.4, but no additional
new discrepancies.

Our focus on this section is understanding the root causes for the discrepancies we observe.
While a large number of synthetic certificates may trigger a particular discrepancy, the
number of root causes behind that discrepancy may only be a handful. These root causes
will reflect differences in TLS implementations. The differences can either be benign (i.e.,
where the TLS spec allows for the libraries to differ) or indicate programming bugs, with or
without security implications.

We analyze discrepancies in two ways to understand the root causes: (i) by parsing security-
relevant information from output logs of libraries, and, (ii) by manually debugging a small
set of discrepancies with output logs that do not contain any meaningful information.

Parsing Output Logs Output logs for a discrepancy-producing certificate can point us
to a potential vulnerability if one library in the differential testing framework rejects the
certificate explicitly for a security reason (e.g., the error message contains “certificate has
expired”). Recall that a discrepancy means at least one other library accepts this certificate.
This difference in behavior may reflect a mistake by the rejecting library, or a security bug
in the accepting one(s).

We systematically investigate such cases by first making a list of all security-relevant strings
from output logs of all results, and then analyzing discrepancies with output logs containing
any such strings. We categorize the results based on the reason for failure and observe the
following:

1. Certificate expired or not yet valid All discrepancy-producing certificates rejected
due to certificate lifetime validity periods produce just one type of discrepancy – discrepancy

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 81

#12 in Figure 6.4. Upon closer inspection, we identified a single root cause for all of them:
MatrixSSL allows for a grace period of 24 hours2 when matching certificate’s notBefore and
notExpiry time values with the local clock. This means that MatrixSSL still finds certificates
with June 16, 2022 and June 14, 2022 dates valid while others do not.

2. Invalid time format We find some discrepancy-producing certificates with peculiar
time values which cannot be parsed by every TLS library. More specifically, we find that
the invalid dates such as February 31st are accepted by GnuTLS, and that the timestamp
containing leap seconds (the value 60 in the seconds field) is accepted by MatrixSSL and
GnuTLS. On manual analysis, we observe these libraries still reject certificates if their validity
is reasonably far behind (or far ahead) of the local clock. Given this, we do not classify these
as vulnerabilities.

3. Unsupported critical extension One discrepancy-producing certificate has a “crit-
ical” Certificate Policies extension with arbitrary data. We find that OpenSSL, LibreSSL
and GnuTLS consider this certificate valid while others do not. We reported this behavior to
OpenSSL3 since the protocol spec says “if this extension is critical, the path validation soft-
ware MUST be able to interpret this extension (including the optional qualifier), or MUST
reject the certificate”. We find that the behavior was indeed closely linked to a security bug
of moderate severity, CVE-2023-0465, published a few months before our report. In more
detail, there was an issue with OpenSSL where it would silently skip all certificate policy
checks upon encountering invalid policies. That said, our synthetic certificates could not
directly find this bug because OpenSSL disables policy checking by default (even for critical
policies).

4. Mismatch between certificate SKID and IKID We notice that the TLS spec
does not require that the Subject Key ID (SKID) and Issuer Key ID (IKID) in a leaf and
issuer certificate match, and thus consider related discrepancy-producing certificates to be
benign. They merely reflect differences in library choices when handling such cases.

Manual analysis A large number of discrepancies in our results do not contain any
meaningful information in their output logs. In order to understand their behavior, we
manually debug a small set of these discrepancies and observe the following:

1. Invalid email in certificate subject We find a handful of certificates, accepted
only by OpenSSL, that contain badly formatted emails in their subject names (e.g., email
with multiple ‘@’ characters) . While emails are typically not a part of a certificate’s subject
name, the TLS spec allows for the possibility due to legacy implementations. Interestingly,
LibreSSL outputs the error number 1 for these certificates (“unspecified error; should not
happen”). We notice that LibreSSL parses email fields from a subject (and points out this
issue) so it can eventually perform name constraints checking, if required. As the issuer
certificate in our experiments did not specify any name constraints, we are unable to say, at
this point, if the OpenSSL behavior can be exploited.

2Reference code can be found at /crypto/keyformat/x509.h#L54-L59 and
/crypto/keyformat/x509.c#L5119-L5128.

3Github issue link: https://github.com/openssl/openssl/issues/21359

https://github.com/openssl/openssl/issues/21359

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 82

2. V1 certificate with extensions We find V1 certificates only accepted by OpenSSL
and LibreSSL that contain TLS extensions (undefined for a V1 certificate). Note that this
behavior was also reported by [142] in their analysis of the discrepancies.

3. Parsing error We find a synthetic certificate with an extra byte in the value of its
KeyUsage extension. The extra byte breaks parsing for TLS implementations other than
OpenSSL and LibreSSL. During our manual analysis, we also find a violation of the TLS
spec by all implementations. As per the spec, “when the keyUsage extension appears in a
certificate, at least one of the bits MUST be set to 1.”. We are able to craft a TLS certificate
that violates that but is validated fine by all implementations. Interestingly, we find that
this property was present in one of the synthetic certificates from our work, but it was not
flagged as it does not generate a discrepancy.

6.5 Discussion

False negatives We note that differential testing can only find software bugs when one of
the TLS implementations mistakenly accepts or rejects a certificate that another does not.
This implies that a software bug affecting all TLS implementations will not be captured
by the framework. In other words, the technique suffers from false negatives. In practice,
increasing the number of reference implementations to use in the differential testing frame-
work can help reduce the number of false negatives (due to the higher probability that one
of the implementations will not contain the same bug as others). In this work, we rely on 5
TLS implementations, but our framework can easily be extended to support more.

Comparison with other works While in this work we compare our technique with
Frankencerts, we must acknowledge a fundamental limitation that accompanies the com-
parison. Unfortunately in the area of software testing and fuzzing, there is not a universal
consensus on the metric to use for benchmarking different techniques. Heuristics such as
percent of code covered or number of discrepancies found help but do not enable a com-
pletely fair comparison. For instance, while we use the same number of synthetic certificates
during comparison, our technique relies on training language models on GPUs with extensive
compute. In comparison, Frankencerts does not require any such bootstrapping. Further,
differential testing in our context is semi-automated, as there is still a need to manually an-
alyze discrepancies to find root causes and previously unknown software bugs. Calculating
the time taken for such analysis further complicates a comparison. A technique that helps
find less discrepancies that are easy to debug and denote security vulnerabilities may be
more useful than another that finds more discrepancies that are of low value.

As such, we do not conclude that synthetic certificate generation using language models
is superior to other techniques, but only that our results indicate the potential of language
models to generate synthetic certificates that trigger diverse behavior and find novel discrep-
ancies. Ultimately, we believe an ensemble of different certificate generation techniques can
provide the most value in terms of improving software security.

Prompt engineering In this work we trained and/or finetuned off-the-shelf language
models using custom training datasets and built a pipeline for sampling synthetic certificates

CHAPTER 6. DIFFERENTIAL TESTING USING LANGUAGE MODELS 83

from the trained representations. Yet another potential way to generate synthetic certificates
is to interact directly with a language model such as ChatGPT and give a prompt relevant to
the task of differential testing (e.g., “Generate a TLS certificate that contains an unexpected
combination of extensions”). While ChatGPT at this moment cannot generate a certificate
with such a simple prompt, it is an interesting direction to further continue interaction with
ChatGPT, guiding it for what a TLS certificate represents, what fuzzing aims to achieve,
and then asking to generate novel synthetic certificates. Such prompt engineering methods
may represent another useful way to leverage language models for differential testing. Note
that a recent work from Meng et al. [143] shows promising results for the use of systematic
interaction with a pre-trained language model to guide a protocol fuzzer.

Using language models for other input formats Our work uses language models
for learning representations for X.509 TLS certificates. Given the success of our method
in learning representations useful for the purposes of software testing, we believe there is
potential in using this technique in other domains where software inputs can also be expressed
in natural language. Some examples include ASN.1 grammars for structures other than TLS
certificates, Javascript-based attack vectors such as invalid Content Security Policies, or
verbose REST APIs used in various online services.

6.6 Conclusion

In this work, we evaluated the usefulness of generative language models in learning X.509 TLS
certificate representations for use in differential testing. Our results indicate the potential
of these models to produce synthetic certificates that trigger diverse behavior and can help
find previously unknown bugs. We present a pipeline to train language models and generate
synthetic certificates, evaluate ways to increase the diversity in sampled outputs, and assess
the corpus performance on different metrics. Our work motivates the use of language models
for differential testing in other domains, and sparks interest in the use of artificial intelligence
to not only learn input grammars, but to also generate test cases that deviate from the learned
grammar in ways that enable software testing for bugs and vulnerabilities.

Chapter 7

Concluding Remarks

The thesis of my work is that the rich diversity in TLS implementations & deployments
introduces opportunities to harm protocol security, and that the harms can be identified (and
mitigated) using rigorous measurement techniques. My work in this dissertation defends
this thesis using two distinct approaches. First, by studying different TLS deployments
in isolation and developing customized measurement techniques, we reveal security issues
that exist only due to the nature of each deployment. Second, by setting multiple TLS
implementations to consistently validate a novel corpus of synthetic certificates, we find a
wide range of implementation differences that reveal protocol violations with implications
on security. Our results demonstrate how even if the TLS spec is assumed to be correct,
protocol security will still remain malleable due to practical factors that come into play
during protocol development or deployment.

In more detail, in Chapter 3, we evaluate TLS effectiveness in consumer IoT devices. Our
results reveal how effectively deploying TLS not only requires the choice of a secure protocol
configuration, but also requires a mechanism to update the deployed stack to keep up with
latest protocol features and avoid deprecated ones. In addition, we are the first to show
how the lack of interfaces to explore file system inside an IoT device opens up a new attack
vector due to the difficulty in inspecting device root stores. In Chapter 4, we evaluate issues
with TLS support on the web that exist due to the insecure HTTP-by-default behavior in
web browsers. Unlike prior works that show a rapid support towards TLS-everywhere, our
results show how such an approach will cause usability issues in a small set of websites,
hindering the progress to a TLS-by-default web. We also notice issues with deploying TLS
consistently on all pages of a website, often as a result of server misconfigurations. In
Chapter 5, we shed light on certificate pinning mechanisms that are not a part of the TLS
spec, but are often found in mobile apps with hardened security measures. We evaluate
whether mobile apps consistently pin across different platform versions of an app as well as
whether pinning mechanisms can actually harm protocol security or user privacy by making
it harder to audit network connections. While our results do not suggest any evidence of
reduced protocol security or privacy, they nonetheless indicate yet another customization in
a TLS deployment that influences protocol security.

Finally, in Chapter 6, we explore diversity in TLS implementations in tandem. We use gen-

84

CHAPTER 7. CONCLUDING REMARKS 85

erative language models to generate synthetic TLS certificates that execute diverse behavior
during differential testing and reveal differences in implementations with security implica-
tions. Our work shows the potential of language models to generate synthetic test cases to
help improve software security. Unlike diversity in deployments where we find previously
unexplored issues related to protocol security, we show how diversity in implementations can
also be leveraged to cross-check them for correctness.

The overarching takeaway from my work in this dissertation is that a rigorous and correct
protocol design is not sufficient to ensure effective TLS use. In addition, it requires exam-
ination of the context in which the protocol gets implemented and deployed, the interplay
between an end-user, developer and various protocol features, and, any emergent properties
that may influence protocol security in ways that do not appear in the design alone.

Bibliography

[1] Https encryption on the web – google transparency report, https://transparencyreport.
google.com/https/overview?hl=en, (Accessed on 11/28/2022).

[2] Apple will require https connections for ios apps by the end of 2016 — techcrunch,
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-

for-ios-apps-by-the-end-of-2016/, (Accessed on 11/28/2022).

[3] Https will now be the default for all android apps, https://www.thesslstore.com/
blog/https-will-now-be-the-default-for-all-android-p-apps/, (Accessed
on 11/28/2022).

[4] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security evaluation of
home-based iot deployments,” in 2019 IEEE Symposium on Security and Privacy
(SP), 2019, pp. 1362–1380. doi: 10.1109/SP.2019.00013.

[5] M. Marlinspike, “More tricks for defeating ssl in practice,” Black Hat USA, 2009.

[6] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The cracked cookie jar: Http cookie
hijacking and the exposure of private information,” in 2016 IEEE Symposium on
Security and Privacy (SP), IEEE, 2016, pp. 724–742.

[7] L. Chang, H.-C. Hsiao, W. Jeng, T. H.-J. Kim, and W.-H. Lin, “Security implications
of redirection trail in popular websites worldwide,” in Proceedings of the 26th Interna-
tional Conference on World Wide Web, International World Wide Web Conferences
Steering Committee, 2017, pp. 1491–1500.

[8] Https://datatracker.ietf.org/meeting/112/materials/agenda-112-maprg-04.html, https:
//datatracker.ietf.org/meeting/112/materials/agenda-112-maprg-04.html,
(Accessed on 11/29/2022).

[9] Introducing ssl/tls recommender, https : / / blog . cloudflare . com / ssl - tls -

recommender/, (Accessed on 11/29/2022).

[10] Apple, google, microsoft, and mozilla come together to end tls 1.0 — ars technica,
https://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-

support-for-20-year-old-tls-1-0/, (Accessed on 05/14/2021).

[11] B. Möller, T. Duong, and K. Kotowicz, “This poodle bites: Exploiting the ssl 3.0
fallback,” Security Advisory, 2014.

86

https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016/
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016/
https://www.thesslstore.com/blog/https-will-now-be-the-default-for-all-android-p-apps/
https://www.thesslstore.com/blog/https-will-now-be-the-default-for-all-android-p-apps/
https://doi.org/10.1109/SP.2019.00013
https://datatracker.ietf.org/meeting/112/materials/agenda-112-maprg-04.html
https://datatracker.ietf.org/meeting/112/materials/agenda-112-maprg-04.html
https://blog.cloudflare.com/ssl-tls-recommender/
https://blog.cloudflare.com/ssl-tls-recommender/
https://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-support-for-20-year-old-tls-1-0/
https://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-support-for-20-year-old-tls-1-0/

BIBLIOGRAPHY 87

[12] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov, “The
most dangerous code in the world: Validating ssl certificates in non-browser soft-
ware,” in Proceedings of the 2012 ACM conference on Computer and communications
security, 2012, pp. 38–49.

[13] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith,
“Why eve and mallory love android: An analysis of android ssl (in)security,” in Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12, Raleigh, North Carolina, USA: Association for Computing Machinery,
2012, pp. 50–61, isbn: 9781450316514. doi: 10.1145/2382196.2382205. [Online].
Available: https://doi.org/10.1145/2382196.2382205.

[14] D. Orikogbo, M. Büchler, and M. Egele, “Crios: Toward large-scale ios application
analysis,” in Proceedings of the 6th Workshop on Security and Privacy in Smartphones
and Mobile Devices, 2016, pp. 33–42.

[15] N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver, and V. Paxson, “A tangled
mass: The android root certificate stores,” in Proceedings of the 10th ACM Interna-
tional on Conference on emerging Networking Experiments and Technologies, 2014,
pp. 141–148.

[16] M. T. Paracha, D. J. Dubois, N. Vallina-Rodriguez, and D. Choffnes, “Iotls: Under-
standing tls usage in consumer iot devices,” in Proceedings of the 21st ACM Internet
Measurement Conference, 2021, pp. 165–178.

[17] Z. Durumeric, Z. Ma, D. Springall, et al., “The security impact of https interception.,”
in NDSS, 2017.

[18] J. Clark et al., Revisiting past challenges and evaluating certificate trust model en-
hancements, may 19-22, 2013.

[19] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using frankencerts
for automated adversarial testing of certificate validation in ssl/tls implementations,”
in 2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 114–129.

[20] Y. Chen and Z. Su, “Guided differential testing of certificate validation in ssl/tls
implementations,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 793–804.

[21] K. Kleine and D. E. Simos, “Coveringcerts: Combinatorial methods for x. 509 certifi-
cate testing,” in 2017 IEEE International conference on software testing, verification
and validation (ICST), IEEE, 2017, pp. 69–79.

[22] S. Y. Chau, O. Chowdhury, E. Hoque, et al., “Symcerts: Practical symbolic execution
for exposing noncompliance in x. 509 certificate validation implementations,” in 2017
IEEE Symposium on Security and Privacy (SP), IEEE, 2017, pp. 503–520.

[23] Rfc 5280 - internet x.509 public key infrastructure certificate and certificate revocation
list (crl) profile, https://datatracker.ietf.org/doc/html/rfc5280, (Accessed
on 12/04/2023).

https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://datatracker.ietf.org/doc/html/rfc5280

BIBLIOGRAPHY 88

[24] J. Zhu, C. Wan, P. Nie, Y. Chen, and Z. Su, “Guided, deep testing of x. 509 certificate
validation via coverage transfer graphs,” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE, 2020, pp. 243–254.

[25] J. Wei, X. Ren, X. Li, et al., “Nezha: Neural contextualized representation for chinese
language understanding,” arXiv preprint arXiv:1909.00204, 2019.

[26] C. Chen, W. Diao, Y. Zeng, S. Guo, and C. Hu, “Drlgencert: Deep learning-based
automated testing of certificate verification in ssl/tls implementations,” in 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), IEEE,
2018, pp. 48–58.

[27] A. Barenghi, N. Mainardi, and G. Pelosi, “Systematic parsing of x. 509: Eradicat-
ing security issues with a parse tree,” Journal of Computer Security, vol. 26, no. 6,
pp. 817–849, 2018.

[28] J. Kasten, E. Wustrow, and J. A. Halderman, “Cage: Taming certificate authorities by
inferring restricted scopes,” in International Conference on Financial Cryptography
and Data Security, Springer, 2013, pp. 329–337.

[29] R. Holz, J. Hiller, J. Amann, et al., “Tracking the deployment of tls 1.3 on the
web: A story of experimentation and centralization,” ACM SIGCOMM Computer
Communication Review, vol. 50, no. 3, pp. 3–15, 2020.

[30] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson, N. Vallina-Rodriguez, and
J. Caballero, “Coming of age: A longitudinal study of tls deployment,” in Proceed-
ings of the Internet Measurement Conference 2018, ser. IMC ’18, Boston, MA, USA:
Association for Computing Machinery, 2018, pp. 415–428, isbn: 9781450356190. doi:
10.1145/3278532.3278568. [Online]. Available: https://doi.org/10.1145/
3278532.3278568.

[31] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz, “Mission accom-
plished? https security after diginotar,” in Proceedings of the 2017 Internet Measure-
ment Conference, 2017, pp. 325–340.

[32] Z. Durumeric, F. Li, J. Kasten, et al., “The matter of heartbleed,” in Proceedings
of the 2014 Conference on Internet Measurement Conference, ser. IMC ’14, Vancou-
ver, BC, Canada: Association for Computing Machinery, 2014, pp. 475–488, isbn:
9781450332132. doi: 10.1145/2663716.2663755. [Online]. Available: https://doi.
org/10.1145/2663716.2663755.

[33] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of the https
certificate ecosystem,” in Proceedings of the 2013 conference on Internet measurement
conference, 2013, pp. 291–304.

[34] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz, “Measuring https
adoption on the web,” in 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 1323–1338.

https://doi.org/10.1145/3278532.3278568
https://doi.org/10.1145/3278532.3278568
https://doi.org/10.1145/3278532.3278568
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755

BIBLIOGRAPHY 89

[35] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann, and
P. Gill, “Studying tls usage in android apps,” in Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies, 2017, pp. 350–
362.

[36] T. Fadai, S. Schrittwieser, P. Kieseberg, and M. Mulazzani, “Trust me, i’m a root ca!
analyzing ssl root cas in modern browsers and operating systems,” in 2015 10th In-
ternational Conference on Availability, Reliability and Security, IEEE, 2015, pp. 174–
179.

[37] H. Perl, S. Fahl, and M. Smith, “You won’t be needing these any more: On remov-
ing unused certificates from trust stores,” in International Conference on Financial
Cryptography and Data Security, Springer, 2014, pp. 307–315.

[38] J. Braun and G. Rynkowski, “The potential of an individualized set of trusted cas:
Defending against ca failures in the web pki,” in 2013 International Conference on
Social Computing, 2013, pp. 600–605. doi: 10.1109/SocialCom.2013.90.

[39] G. Developer, Network security configuration, https://developer.android.com/
training/articles/security-config, (Accessed on 09/08/2021).

[40] A. Possemato and Y. Fratantonio, “Towards HTTPS everywhere on android: We are
not there yet,” in 29th USENIX Security Symposium (USENIX Security 20), 2020,
pp. 343–360.

[41] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and S. Fahl, “Why eve and
mallory still love android: Revisiting tls (in) security in android applications,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021.

[42] Tls fingerprinting in the real world - cisco blogs, https : / / blogs . cisco . com /
security/tls-fingerprinting-in-the-real-world, (Accessed on 11/25/2020).

[43] S. Frolov and E. Wustrow, “The use of tls in censorship circumvention.,” in NDSS,
2019.

[44] Number of iot devices 2015-2025 — statista, https://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/, (Accessed on 12/02/2020).

[45] This poodle bites: Exploiting the ssl 3.0 fallback, https://www.openssl.org/~bodo/
ssl-poodle.pdf, (Accessed on 05/03/2021).

[46] S. J. Saidi, A. M. Mandalari, R. Kolcun, et al., “A haystack full of needles: Scalable
detection of iot devices in the wild,” in Proceedings of the ACM Internet Measurement
Conference, 2020, pp. 87–100.

[47] What you need to know about the solarwinds supply-chain attack — sans institute,
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-

supply-chain-attack/, (Accessed on 04/04/2021).

[48] Rfc2818, https : / / datatracker . ietf . org / doc / html / rfc2818, (Accessed on
05/22/2021).

[49] Rfc5280, https : / / datatracker . ietf . org / doc / html / rfc5280, (Accessed on
05/22/2021).

https://doi.org/10.1109/SocialCom.2013.90
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world
https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280

BIBLIOGRAPHY 90

[50] Mitmproxy - an interactive https proxy, https://mitmproxy.org/, (Accessed on
05/26/2021).

[51] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi,
“Information Exposure for Consumer IoT Devices: A Multidimensional, Network-
Informed Measurement Approach,” in Proc. of the Internet Measurement Conference
(IMC), 2019.

[52] Refs - platform/system/ca-certificates - git at google, https://android.googlesource.
com/platform/system/ca-certificates/+refs, (Accessed on 05/19/2021).

[53] Platform/libcore - git at google, https://android.googlesource.com/platform/
libcore/, (Accessed on 05/19/2021).

[54] Mozilla-central: Certdata.txt, https://hg.mozilla.org/mozilla-central/file/
tip/security/nss/lib/ckfw/builtins/certdata.txt, (Accessed on 05/19/2021).

[55] Microsoft trusted root certificate program: Participants - technet articles - united
states (english) - technet wiki, https://social.technet.microsoft.com/wiki/
contents/articles/31634.microsoft-trusted-root-certificate-program-

participants.aspx, (Accessed on 05/19/2021).

[56] Mitmproxy/tls passthrough.py at main · mitmproxy/mitmproxy, https://github.
com/mitmproxy/mitmproxy/blob/main/examples/contrib/tls_passthrough.py,
(Accessed on 05/26/2021).

[57] Y. Liu, W. Tome, L. Zhang, et al., “An end-to-end measurement of certificate revoca-
tion in the web’s pki,” in Proceedings of the 2015 Internet Measurement Conference,
ser. IMC ’15, Tokyo, Japan: Association for Computing Machinery, 2015, pp. 183–
196, isbn: 9781450338486. doi: 10.1145/2815675.2815685. [Online]. Available:
https://doi.org/10.1145/2815675.2815685.

[58] 1493822 - removal of ”visa ecommerce root” ca from mozilla root program, https:
//bugzilla.mozilla.org/show_bug.cgi?id=1493822, (Accessed on 05/16/2021).

[59] 1552374 - remove certinomis - root ca, https://bugzilla.mozilla.org/show_bug.
cgi?id=1552374, (Accessed on 05/16/2021).

[60] Revoking trust in two turktrust certificates - mozilla security blog, https://blog.
mozilla.org/security/2013/01/03/revoking- trust- in- two- turktrust-

certficates/, (Accessed on 05/16/2021).

[61] Net/data/ssl/blocklist - chromium/src - git at google, https://chromium.googlesource.
com/chromium/src/+/refs/heads/main/net/data/ssl/blocklist/, (Accessed on
05/26/2021).

[62] Google online security blog: Distrusting wosign and startcom certificates, https://
security.googleblog.com/2016/10/distrusting-wosign-and-startcom.html,
(Accessed on 05/26/2021).

[63] Fire os overview — amazon fire tv, https://developer.amazon.com/docs/fire-
tv/fire-os-overview.html, (Accessed on 11/21/2020).

https://mitmproxy.org/
https://android.googlesource.com/platform/system/ca-certificates/+refs
https://android.googlesource.com/platform/system/ca-certificates/+refs
https://android.googlesource.com/platform/libcore/
https://android.googlesource.com/platform/libcore/
https://hg.mozilla.org/mozilla-central/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
https://hg.mozilla.org/mozilla-central/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
https://social.technet.microsoft.com/wiki/contents/articles/31634.microsoft-trusted-root-certificate-program-participants.aspx
https://social.technet.microsoft.com/wiki/contents/articles/31634.microsoft-trusted-root-certificate-program-participants.aspx
https://social.technet.microsoft.com/wiki/contents/articles/31634.microsoft-trusted-root-certificate-program-participants.aspx
https://github.com/mitmproxy/mitmproxy/blob/main/examples/contrib/tls_passthrough.py
https://github.com/mitmproxy/mitmproxy/blob/main/examples/contrib/tls_passthrough.py
https://doi.org/10.1145/2815675.2815685
https://doi.org/10.1145/2815675.2815685
https://bugzilla.mozilla.org/show_bug.cgi?id=1493822
https://bugzilla.mozilla.org/show_bug.cgi?id=1493822
https://bugzilla.mozilla.org/show_bug.cgi?id=1552374
https://bugzilla.mozilla.org/show_bug.cgi?id=1552374
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/data/ssl/blocklist/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/data/ssl/blocklist/
https://security.googleblog.com/2016/10/distrusting-wosign-and-startcom.html
https://security.googleblog.com/2016/10/distrusting-wosign-and-startcom.html
https://developer.amazon.com/docs/fire-tv/fire-os-overview.html
https://developer.amazon.com/docs/fire-tv/fire-os-overview.html

BIBLIOGRAPHY 91

[64] M. O’Neill, S. Heidbrink, J. Whitehead, et al., “The secure socket api: Tls as an
operating system service,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 799–816.

[65] Ioxt - the global standard for iot security, https://www.ioxtalliance.org/, (Ac-
cessed on 05/26/2021).

[66] Cab forum — certification authorities, web browsers, and interested parties working
to secure the web, https://cabforum.org/, (Accessed on 09/27/2021).

[67] C. Hesselman, J. Jansen, M. Davids, and R. d. O. Schmidt, “Spin: A user-centric
security extension for in-home networks,” SIDN Labs Technical report SIDN-TR-
2017-002, Tech. Rep., 2017.

[68] A. M. Mandalari, D. J. Dubois, R. Kolcun, M. T. Paracha, H. Haddadi, and D.
Choffnes, “Blocking without Breaking: Identification and Mitigation of Non-Essential
IoT Traffic,” in Proc. of the Privacy Enhancing Technologies Symposium (PETS),
2021.

[69] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq, “The tv is smart
and full of trackers: Measuring smart tv advertising and tracking,” Proceedings on
Privacy Enhancing Technologies, vol. 2020, no. 2, 2020.

[70] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz, “Measuring
HTTPS Adoption on the Web,” in 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC: USENIX Association, 2017, pp. 1323–1338.

[71] Electronic Frontier Foundation, HTTPS Everywhere, https://www.eff.org/https-
everywhere, [Last accessed: June 17, 2019], 2019.

[72] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-wide Scanning
and Its Security Applications,” in Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13), Washington, D.C.: USENIX, 2013, pp. 605–620.

[73] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz, “Mission Ac-
complished?: HTTPS Security After Diginotar,” in Proceedings of the 2017 Internet
Measurement Conference, ser. IMC ’17, New York, NY, USA: ACM, 2017, pp. 325–
340.

[74] Google, HTTPS encryption on the web – Google Transparency Report, https://
transparencyreport.google.com/https/overview, [Last accessed: June 16, 2019],
2019.

[75] Electronic Frontier Foundation, The EFF SSL Observatory, https://www..org/
observatory, [Last accessed: June 16, 2019], 2010.

[76] Alexa Support, Does Alexa have a list of its top-ranked websites? https://support.

alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-

top-ranked-websites-, [Last accessed: June 22, 2019], 2019.

[77] Q. Scheitle, O. Hohlfeld, J. Gamba, et al., “A Long Way to the Top: Significance,
Structure, and Stability of Internet Top Lists,” in Proceedings of the Internet Mea-
surement Conference 2018, ser. IMC ’18, New York, NY, USA: ACM, 2018, pp. 478–
493.

https://www.ioxtalliance.org/
https://cabforum.org/
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://www..org/observatory
https://www..org/observatory
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-

BIBLIOGRAPHY 92

[78] Alexa Support, How are Alexa’s traffic rankings determined? https://support.

alexa . com / hc / en - us / articles / 200449744 - How - are - Alexa - s - traffic -

rankings-determined-, [Last accessed: June 22, 2019], 2019.

[79] K. Reiz, Requests III: HTTP for Humans and Machines, alike. https://3.python-
requests.org, [Last accessed: June 17, 2019], 2018.

[80] L. Richardson, PyPI: beautifulsoup4, https://pypi.org/project/beautifulsoup4/,
[Last accessed: June 17, 2019], 2019.

[81] J. Graham, PyPI: html5lib, https://pypi.org/project/html5lib/, [Last accessed:
June 17, 2019], 2017.

[82] M. Henzinger, “Finding near-duplicate web pages: A large-scale evaluation of algo-
rithms,” in Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, ACM, 2006, pp. 284–291.

[83] Moz Developer Blog, Near-duplicate Detection at Moz, https://moz.com/devblog/
near-duplicate-detection/, [Last accessed: June 17, 2019], 2015.

[84] F. Cangialosi, T. Chung, D. Choffnes, et al., “Measurement and analysis of private key
sharing in the https ecosystem,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ACM, 2016, pp. 628–640.

[85] Cloudflare, Investor Presentation Q4 2019, https://cloudflare.net/files/doc_
downloads/Presentations/2020/NET-Q4-2019-Investor-Presentation_FINAL.

pdf, [Last accessed: May 10, 2020], 2020.

[86] Mozilla, Mozilla Observatory, https://observatory.mozilla.org/, [Last accessed:
June 26, 2019], 2017.

[87] HTTPSWatch, About, https://httpswatch.com/about, [Last accessed: June 26,
2019], 2017.

[88] Censys, Censys, https://censys.io/, [Last accessed: June 26, 2019], 2017.

[89] Google, HTTPS FAQs, https : / / support . google . com / transparencyreport /
answer/7381231/, [Last accessed: June 26, 2019], 2017.

[90] Statista, Number of mobile app downloads worldwide from 2016 to 2021, https :
//www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-

app-store-downloads/, (Accessed on 05/18/2022), 2022.

[91] Rogue web certificate could have been used to attack iran dissidents — google — the
guardian, https://www.theguardian.com/technology/2011/aug/30/faked-web-
certificate-iran-dissidents, (Accessed on 05/17/2022).

[92] Dell does a lenovo: Ships laptops with rogue root ca - ghacks tech news, https :
//www.ghacks.net/2015/11/23/dell-does-a-lenovo-ships-laptops-with-

rogue-root-ca/, (Accessed on 05/17/2022).

[93] Imperialviolet - public key pinning, https://www.imperialviolet.org/2011/05/
04/pinning.html, (Accessed on 01/17/2021).

[94] Can I Use, HTTP Public Key Pinning, https://caniuse.com/?search=hpkp,
(Accessed on 05/18/2022), 2022.

https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined-
https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined-
https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined-
https://3.python-requests.org
https://3.python-requests.org
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/html5lib/
https://moz.com/devblog/near-duplicate-detection/
https://moz.com/devblog/near-duplicate-detection/
https://cloudflare.net/files/doc_downloads/Presentations/2020/NET-Q4-2019-Investor-Presentation_FINAL.pdf
https://cloudflare.net/files/doc_downloads/Presentations/2020/NET-Q4-2019-Investor-Presentation_FINAL.pdf
https://cloudflare.net/files/doc_downloads/Presentations/2020/NET-Q4-2019-Investor-Presentation_FINAL.pdf
https://observatory.mozilla.org/
https://httpswatch.com/about
https://censys.io/
https://support.google.com/transparencyreport/answer/7381231/
https://support.google.com/transparencyreport/answer/7381231/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.theguardian.com/technology/2011/aug/30/faked-web-certificate-iran-dissidents
https://www.theguardian.com/technology/2011/aug/30/faked-web-certificate-iran-dissidents
https://www.ghacks.net/2015/11/23/dell-does-a-lenovo-ships-laptops-with-rogue-root-ca/
https://www.ghacks.net/2015/11/23/dell-does-a-lenovo-ships-laptops-with-rogue-root-ca/
https://www.ghacks.net/2015/11/23/dell-does-a-lenovo-ships-laptops-with-rogue-root-ca/
https://www.imperialviolet.org/2011/05/04/pinning.html
https://www.imperialviolet.org/2011/05/04/pinning.html
https://caniuse.com/?search=hpkp

BIBLIOGRAPHY 93

[95] Google Developer, Jelly Bean, https://developer.android.com/about/versions/
jelly-bean.html#android-4.2, (Accessed on 05/18/2022), 2012.

[96] Android Developer, Security with HTTPS and SSL (version updated 2021-01-26),
https://web.archive.org/web/20210301223141/https://developer.android.

com/training/articles/security-ssl, (Accessed on 05/18/2022), Jan. 2021.

[97] Google Developer, Security with HTTPS and SSL, https://developer.android.
com/training/articles/security-ssl, (Accessed on 05/18/2022), Oct. 2021.

[98] Apple Developer, Identity Pinning: How to configure server certificates for your app,
https://developer.apple.com/news/?id=g9ejcf8y, (Accessed on 05/18/2022),
Jan. 2021.

[99] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann, and
P. Gill, “Studying tls usage in android apps,” in Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies, ser. CoNEXT
’17, Incheon, Republic of Korea: Association for Computing Machinery, 2017, pp. 350–
362, isbn: 9781450354226. doi: 10.1145/3143361.3143400. [Online]. Available:
https://doi.org/10.1145/3143361.3143400.

[100] Z. Ma, J. Austgen, J. Mason, Z. Durumeric, and M. Bailey, “Tracing your roots:
Exploring the tls trust anchor ecosystem,” in Proc. of the ACM Internet Measurement
Conference (IMC), 2021.

[101] Matlink/gplaycli: Google play downloader via command line, https://github.com/
matlink/gplaycli, (Accessed on 05/18/2022).

[102] Alternativeto, https://alternativeto.net/, (Accessed on 05/17/2022).

[103] Google-play-scraper, https://pypi.org/project/google-play-scraper/, (Ac-
cessed on 05/18/2022).

[104] Apple, App store downloads on itunes, https://apps.apple.com/us/genre/ios/
id36, (Accessed on 05/11/2022).

[105] Apple Developer Documentation, Nspinneddomains, https://developer.apple.
com/documentation/bundleresources/information_property_list/nsapptransportsecurity/

nspinneddomains, (Accessed on 05/19/2022), 2022.

[106] Rfc 7469 - public key pinning extension for http, https://tools.ietf.org/html/
rfc7469, (Accessed on 01/17/2021).

[107] Rfc 6698 - the dns-based authentication of named entities (dane) transport layer se-
curity (tls) protocol: Tlsa, https://tools.ietf.org/html/rfc6698, (Accessed on
01/17/2021).

[108] Certificatepinner (okhttp 3.14.0 api), https://square.github.io/okhttp/3.x/
okhttp/okhttp3/CertificatePinner.html, (Accessed on 01/17/2021).

[109] Apktool, https://ibotpeaches.github.io/Apktool/.

[110] Flexdecrypt, https://github.com/JohnCoates/flexdecrypt.

[111] Frida-ios-dump, https://github.com/AloneMonkey/frida-ios-dump.

https://developer.android.com/about/versions/jelly-bean.html#android-4.2
https://developer.android.com/about/versions/jelly-bean.html#android-4.2
https://web.archive.org/web/20210301223141/https://developer.android.com/training/articles/security-ssl
https://web.archive.org/web/20210301223141/https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.apple.com/news/?id=g9ejcf8y
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/3143361.3143400
https://github.com/matlink/gplaycli
https://github.com/matlink/gplaycli
https://alternativeto.net/
https://pypi.org/project/google-play-scraper/
https://apps.apple.com/us/genre/ios/id36
https://apps.apple.com/us/genre/ios/id36
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nspinneddomains
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nspinneddomains
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nspinneddomains
https://tools.ietf.org/html/rfc7469
https://tools.ietf.org/html/rfc7469
https://tools.ietf.org/html/rfc6698
https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html
https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html
https://ibotpeaches.github.io/Apktool/
https://github.com/JohnCoates/flexdecrypt
https://github.com/AloneMonkey/frida-ios-dump

BIBLIOGRAPHY 94

[112] ripgrep (rg), https://github.com/BurntSushi/ripgrep.

[113] Radare2, https://rada.re/.

[114] Crt.sh — certificate search, https://crt.sh/, (Accessed on 05/17/2022).

[115] mitmproxy, https://mitmproxy.org/.

[116] Checkra1n, https://checkra.in.

[117] Android Developer,Write automated tests with UI Automator, https://web.archive.
org/web/20220907074832/https://developer.android.com/training/testing/

other-components/ui-automator, (Accessed on 09/07/2022), Mar. 2022.

[118] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “ReCon: Revealing and
Controlling PII Leaks in Mobile Network Traffic,” in Proc. of the International Con-
ference on Mobile Systems, Applications and Services (MobiSys), 2016.

[119] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez, and S. Egel-
man, “50 ways to leak your data: An exploration of apps’ circumvention of the android
permissions system,” in Proc. of the USENIX Security Symposium, 2019.

[120] Frida, https://frida.re/, (Accessed on 11/15/2021).

[121] K. Kollnig, A. Shuba, R. Binns, M. V. Kleek, and N. Shadbolt, “Are iPhones Really
Better for Privacy? A Comparative Study of iOS and Android Apps,” in Proc. of the
Privacy Enhancing Technologies Symposium (PETS), 2022.

[122] J. Ren, M. Lindorfer, D. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez,
“Bug Fixes, Improvements, ... and Privacy Leaks – A Longitudinal Study of PII
Leaks Across Android App Versions,” in Proc. of the Network and Distributed System
Security Symposium (NDSS), 2018.

[123] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, et al., “Apps, Trackers, Pri-
vacy, and Regulators A Global Study of the Mobile Tracking Ecosystem,” in Proc. of
the Network and Distributed System Security Symposium (NDSS), 2018.

[124] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To pin or not to {pin—helping}
app developers bullet proof their {tls} connections,” in 24th USENIX Security Sym-
posium (USENIX Security 15), 2015, pp. 239–254.

[125] C. M. Stone, T. Chothia, and F. D. Garcia, “Spinner: Semi-automatic detection of
pinning without hostname verification,” in Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2017.

[126] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-Rodriguez, “An
analysis of pre-installed android software,” in Proc. of the IEEE Symposium on Se-
curity and Privacy (S&P), 2020.

[127] Curl ca extract: Extract ca certs from mozilla, https://curl.se/docs/caextract.
html, (Accessed on 05/19/2022).

[128] Rfc 8446 - the transport layer security (tls) protocol version 1.3, https://datatracker.
ietf.org/doc/html/rfc8446, (Accessed on 12/04/2023).

https://rada.re/
https://crt.sh/
https://checkra.in
https://web.archive.org/web/20220907074832/https://developer.android.com/training/testing/other-components/ui-automator
https://web.archive.org/web/20220907074832/https://developer.android.com/training/testing/other-components/ui-automator
https://web.archive.org/web/20220907074832/https://developer.android.com/training/testing/other-components/ui-automator
https://frida.re/
https://curl.se/docs/caextract.html
https://curl.se/docs/caextract.html
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446

BIBLIOGRAPHY 95

[129] Rfc 5246 - the transport layer security (tls) protocol version 1.2, https://datatracker.
ietf.org/doc/html/rfc5246, (Accessed on 12/04/2023).

[130] Imperialviolet - apple’s ssl/tls bug, https://www.imperialviolet.org/2014/02/
22/applebug.html, (Accessed on 12/04/2023).

[131] Openssl ’heartbleed’ vulnerability (cve-2014-0160) — cisa, https://www.cisa.gov/
news-events/alerts/2014/04/08/openssl-heartbleed-vulnerability-cve-

2014-0160, (Accessed on 12/04/2023).

[132] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for input
fuzzing,” in 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, 2017, pp. 50–59.

[133] M. Sablotny, B. S. Jensen, and C. W. Johnson, “Recurrent neural networks for fuzz
testing web browsers,” in Information Security and Cryptology–ICISC 2018: 21st In-
ternational Conference, Seoul, South Korea, November 28–30, 2018, Revised Selected
Papers 21, Springer, 2019, pp. 354–370.

[134] Chatgpt, https://chat.openai.com/auth/login, (Accessed on 12/04/2023).

[135] Chatgpt sets record for fastest-growing user base - analyst note — reuters, https:
//www.reuters.com/technology/chatgpt- sets- record- fastest- growing-

user-base-analyst-note-2023-02-01/, (Accessed on 12/04/2023).

[136] The 2010s: Our decade of deep learning / outlook on the 2020s, https://people.
idsia.ch/~juergen/2010s-our-decade-of-deep-learning.html, (Accessed on
12/04/2023).

[137] Rapid7 - practitioner-first cybersecurity solutions, https://www.rapid7.com/, (Ac-
cessed on 12/04/2023).

[138] Github - p1sec/pycrate: A python library to ease the development of encoders and
decoders for various protocols and file formats; contains asn.1 and csn.1 compilers.
https://github.com/P1sec/pycrate, (Accessed on 12/04/2023).

[139] Github - nikhilbarhate99/char-rnn-pytorch: Minimal implementation of multi-layer
recurrent neural networks (lstm) for character-level language modelling in pytorch,
https://github.com/nikhilbarhate99/Char-RNN-PyTorch, (Accessed on 12/04/2023).

[140] Eleutherai/gpt-neo-125m · hugging face, https://huggingface.co/EleutherAI/
gpt-neo-125m, (Accessed on 12/04/2023).

[141] Github - wolfcw/libfaketime: Libfaketime modifies the system time for a single appli-
cation, https://github.com/wolfcw/libfaketime, (Accessed on 12/04/2023).

[142] C. Tian, C. Chen, Z. Duan, and L. Zhao, “Differential testing of certificate validation
in ssl/tls implementations: An rfc-guided approach,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 28, no. 4, pp. 1–37, 2019.

[143] R. Meng, M. Mirchev, M. Bohme, and A. Roychoudhury, “Large language model
guided protocol fuzzing,” in NDSS, 2024.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.cisa.gov/news-events/alerts/2014/04/08/openssl-heartbleed-vulnerability-cve-2014-0160
https://www.cisa.gov/news-events/alerts/2014/04/08/openssl-heartbleed-vulnerability-cve-2014-0160
https://www.cisa.gov/news-events/alerts/2014/04/08/openssl-heartbleed-vulnerability-cve-2014-0160
https://chat.openai.com/auth/login
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://people.idsia.ch/~juergen/2010s-our-decade-of-deep-learning.html
https://people.idsia.ch/~juergen/2010s-our-decade-of-deep-learning.html
https://www.rapid7.com/
https://github.com/P1sec/pycrate
https://github.com/nikhilbarhate99/Char-RNN-PyTorch
https://huggingface.co/EleutherAI/gpt-neo-125m
https://huggingface.co/EleutherAI/gpt-neo-125m
https://github.com/wolfcw/libfaketime

	Introduction
	Background and Related Work
	Protocol Basics
	TLS Security
	Network Measurement

	TLS Usage in Consumer IoT Devices
	Goals
	Methodology
	Testbed
	Instrumentation

	Results
	TLS Connection Security
	Certificate Validation
	Diversity of TLS Behavior

	Discussion
	Conclusion

	Web Content Availability and Consistency over HTTP/S
	Methodology
	HTTP/S Inconsistencies
	Crawling Overview
	Identifying Inconsistencies

	Results
	Summary Results
	Factors Influencing Inconsistencies
	Comparing HTTPS Adoption Metrics

	Discussion
	Conclusion

	TLS Certificate Pinning in Mobile Applications
	Background and Motivation
	Goals
	Methodology
	Datasets
	Static Analysis
	Dynamic Analysis
	Circumventing Pinning
	PII Analysis
	iOS Background Traffic

	Results
	Pinning in Common Apps
	Pinning in Popular vs Random Apps
	Certificate Analysis
	Connection Security
	PII in Pinned vs Non-Pinned Traffic
	Limitations

	Discussion
	Conclusion

	Testing TLS Certificate Validation Using Generative Language Models
	Background and Motivation
	Goals
	Methodology
	Certificate Datasets
	Language Models
	Differential Testing Framework

	Results
	Discrepancies and Code Coverage
	Certificate Diversity
	Security Implications

	Discussion
	Conclusion

	Concluding Remarks

