
Thesis Colloquium 10.11.2024

Supervisor:

Signed Certificate Timestamp: A Never-Failing Promise?

Luis Wengenmair

Prof. Dr. Kevin Borgolte

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 2

• Introduction
• Problem
• Methodology

– CT log on local machine
– sctchecker
– Own Python code

• Results
• What have we learned?

Content

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 3

Introduction

• TLS is the de-facto standard to communicate encrypted
– Digital certificates are needed

• Certificate Authorities give out certificates
• Digital certificates can be cryptographically verified

through signatures
– CAs themselves not

• Several misbehaving CAs showed need for measures

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 4

• CT logs emerged as a solution to track CA-activities
– Misissued certificates attract attention

• These logs are huge lists which consist of „Merkle Trees“
• Anyone can check for a given certificate if it is included in a

log using the API

Introduction

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 5

Problem

• Instant inclusion into CT logs is not always possible
• „Promises“ for inclusion (so called Signed Certificate

Timestamps) are given out by CT log providers
• There exist no research regarding the reliance of SCTs

– It is not tested on a large-scale whether the existence not only
promises the inclusion but also proofs it

• In this thesis we want to verify for a large number of
certificates if the promise of inclusion is kept

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 6

Methodology

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 7

Methodology

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 8

• Utilization of the ZMap-Project
• ZMap to identify all hosts in the IPv4 space with Port 443

not closed
• With ZGrab try to build up TLS-connection with those hosts

– download the corresponding digital certificate

IPv4-Scan

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 9

Tranco

• Tranco is a „Research-Oriented Top Sites Ranking
Hardened Against Manipulation”
– List of the top one million domains

• Utilizing OpenSSL, download the digital certificate from
all these websites

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 10

Methodology

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 11

CT log on local machine

• Tool from Google repository to scan one whole CT log
• Verification process for one certificate is exceptionally

fast
• Preceding extensive time and space requirements

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 12

• Tool from Google for verifying the validity of SCTs
embedded in a given certificate

• Extensive and sophisticated code base
• Output needs to be further processed
• Relatively slow

sctchecker

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 13

Own Python code

• Utilization of different libraries to request proof of
inclusion
– also able to utilize the local CT log

• Exactly developed for our own demand
– Statistics and minimal function

• Has not been tested extensively
– Highly likely to not cover every edge case
– May have (severe) bugs

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 14

Methodology

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 15

Combining techniques

• We utilize the advantages of each of the techniques
– reducing the individual disadvantages

• First, use own Python code as well as the local CT log
• Certificates, not successfully verified in first instance, are

given to the sctchecker tool from Google

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 16

• To showcase the efficiency of our pipeline, we present the
average time needed to verify one single certificate

• Python code (only with API) takes about one second
• sctchecker takes about two seconds
• Local CT log takes less then two milliseconds

Results
Performance

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 17

Results
Verifiable certificates

IPv4-scan (gathered 711349 in total) Tranco (gathered 722983 in total)

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 18

Results
SCT statistics

• IP-Scan: ~94% successful verification
• Tranco: ~96% successful verification

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 19

• We found no evidence for misbehaving or non-compliant
SCTs
– Most of the time, we were not able to verify the inclusion of one

certificate, external factors played a role
• No definitive proof that SCTs are absolutely reliable
• Further research is needed

– This can include some larger datasets to test
– Could optimize verification by enhancing given code

What have we learned?

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 20

What have we learned?

• Rate limiting and blacklisting makes it harder to audit on
a large-scale
– Rate limiting by CT Logs
– Blacklisting by issuers’ certificate provider

• Checking for delay of inclusion not possible after long
period of time
– Some monitors check timely inclusion

Thesis Colloquium 10.11.2024

Thank You For Your Attention!
Any Questions?

Signed Certificate Timestamps: A Never-Failing Promise? | SOFTSEC | Thesis Colloquium | 10.11.2024 22

Performance
Amount of work

• All certificates are processed by our own Python code
– optional: verify through local CT log

• Failed verification results in utilization of sctchecker
• IP-scan

– ~20% local CT log
– ~4% sctchecker

• Tranco
– ~10% local CT log
– ~2% sctchecker

