
Signed Certificate Timestamps: A Never-
Failing Promise?

Luis Wengenmair

Bachelors’s Thesis – November 8, 2024
Chair for Security of Software

1st Supervisor: Prof. Dr. Kevin Borgolte
2nd Supervisor: Dr. Muhammad Talha Paracha

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Goals and Contribution . 6
1.3 Structure . 7
1.4 Information on language support . 7

2 Background 9
2.1 Transport Layer Security (TLS) . 9
2.2 Certificate Authority (CA) . 10

2.2.1 Root Certificate Authorities (Root CAs 11
2.2.2 Intermediate Certificate Authorities 11
2.2.3 Certificate Revocation . 11

2.3 Certificate Transparency Logs (CT Logs) 12
2.3.1 Merkle Trees . 13
2.3.2 Procedure . 15
2.3.3 Signed Certificate Timestamps (SCT) 15
2.3.4 Precertificates . 16
2.3.5 API . 17
2.3.6 Monitoring . 17
2.3.7 Auditing . 18
2.3.8 Handling by browsers . 18

3 Approach 21
3.1 Gathering of certificates . 22

3.1.1 IPv4 . 22
3.1.2 Tranco’s one million . 23

3.2 Verifying inclusion of certificates . 23
3.2.1 Google’s Go library . 23
3.2.2 Own Python Code . 24

Contents 1

3.2.3 Censys.io . 25
3.3 Advantages and Disadvantages . 25

3.3.1 CT log on local machine . 26
3.3.2 sctchecker . 26
3.3.3 Own Python code . 27
3.3.4 Censys.io . 27

3.4 Combination of different techniques 27

4 Implementation 29
4.1 Gathering of certificates . 29

4.1.1 IPv4 . 29
4.1.2 Tranco’s one million . 30

4.2 Verifying inclusion of certificates . 31
4.2.1 Google’s Go library . 31
4.2.2 Own Python Code . 33

5 Results 37
5.1 Gathering of certificates . 37
5.2 Verifying SCTs . 37

5.2.1 IPv4 . 38
5.2.2 Tranco’s one million . 40

5.3 Downloading a CT Log . 41

6 Discussion 43
6.1 Rate limiting and blacklisting . 43
6.2 Timely inclusion . 44
6.3 Independent code for using API . 44
6.4 Mirrors of CT logs . 44

7 Conclusion 45

A Appendix 47

Bibliography 63

Abstract

Since its introduction into the web’s ecosystem, Certificate Transparency (CT) logs
have played an instrumental role in fostering greater trust in Certificate Authori-
ties (CAs). Prior to this, CAs were organizations that operated with considerable
autonomy, largely unaccountable to any external oversight. The presence of CT logs
ensures that users are not required to place unconditional trust in CAs, as these
logs document the activities of the CAs and enable the detection of discrepancies
regarding the issuance of digital certificates. One might reasonably question whether
there is any reason to trust the controllers of CAs.
The verifiability of CT logs by any individual or entity wishing to monitor or audit
them provides a rationale for trusting their data, as it is publicly accessible. In con-
trast to monitors who verify the consistency of the logs with respect to newly issued
certificates, auditors perform a supplementary function of checking for the proper
inclusion of certificates in the logs and are thus able to detect any potential gaps in
the data. While there are numerous monitors querying for consistency proofs, auditing
is not commonly conducted on a large scale in the same manner as monitoring. It is
therefore unclear whether the promise made by CT logs to include certificates is kept
and can be trusted unconditionally.
In order to ascertain whether there is evidence to suggest that this promise should
not be trusted, our research has verified the claims made by CT logs on a large scale.
A comprehensive investigation was conducted into millions of promises for inclusion,
with the objective of verifying their validity.
The majority of these promises were found to have been fulfilled. In the cases where
verification could not be conducted, external factors were identified as the primary
reason for this inability.
The findings of this investigation indicate that there is no evidence to suggest that
the promises made by CT logs cannot be trusted. Nevertheless, this does not consti-
tute definitive proof that the aforementioned guarantees can be relied upon to the
exclusion of all doubt. Further research is required to gain a more comprehensive
understanding of this topic. This research should take into consideration the findings
presented throughout this study. It should address the obstacles presented by servers
providing the issuer’s certificates, expand the dataset of certificates, and/or advance

4 Contents

the development of code capable of efficient SCT auditing on a large scale. For the
latter, our provided code can serve as a solid foundation.

1 Introduction

1.1 Motivation

In the contemporary era, the ability to communicate via the Internet has become
a necessity for all individuals and entities. The use of the internet is not limited
to the exchange of brief messages with friends and family; it is also employed in
a variety of other contexts, including online banking, e-commerce, healthcare, and
the workplace. The transfer of personal and sensitive data is a prerequisite for the
provision of these services, which are conducted via the Internet. Such data may
include credit card details, home addresses, medical histories, and client information.
In order to guarantee the privacy and protection of this sensitive data, it is necessary to
implement specific measures. One potential solution is the implementation of network
security protocols. Transport Layer Security (TLS) has become the de facto standard
for ensuring secure and authenticated communication over the Internet. To fulfill this
purpose, TLS relies on digital certificates to establish a secure connection between
two parties [Res18]. Certificates are issued by Certificate Authorities (CAs), which
are tasked with ensuring that only verified individuals and institutions are granted a
corresponding certificate for their domain. In order to ensure the continued security
and privacy of digital communications, it is essential to guarantee the integrity and
trustworthiness of the Certificate Authorities (CAs) responsible for issuing digital
certificates [AL21].

The DigiNotar breach in 2011 had a significant impact on the trust placed in CAs. In
this incident, attackers managed to impersonate websites and obtain valid certificates
issued by DigiNotar. This resulted in significant security and privacy breaches, which in
turn led to a loss of trust in the CAs. This incident underscored the necessity for greater
transparency and accountability in regard to CAs [Mil11].

In response to these critical needs, Certificate Transparency (CT) logs have emerged
as a potential solution. They provide public and cryptographically verifiable records
of digital certificates issued by CAs. This serves the purpose of enabling the operator
of a domain to search for and examine all certificates that have been issued for

6 1 Introduction

their domain, with the objective of verifying that no fraudulent certificates have
been issued. Certificate Transparency (CT) logs are composed of append-only and
cryptographically secure Merkle trees, which contain a comprehensive record of all
digital certificates utilized within the public internet, at least in theory. Browsers
that utilize TLS and require the corresponding digital certificate can then examine
whether the certificate is present in a CT log [LLK13].

It is, however, not feasible to instantaneously update the Merkle trees when a new
certificate is received, due to the considerable size of the trees and the necessity to
append up to several million certificates per day. This implies that a certificate cannot
be immediately verified by a browser; however, customers of CAs require certificates
to be operational without delay. To meet this expectation, the CT logs promptly
return a Signed Certificate Timestamp (SCT), which serves as a promise from the
CT log provider to the certificate owner that the certificate will be included in their
log within a specified timeframe. Browsers may then utilize the signature of the
SCT to validate certificates instead of directly examining the logs via API, as this
would be excessively time-consuming. While the SCTs ensure the prompt and efficient
validation of certificates, the system’s overall integrity depends on the accurate and
timely inclusion of certificates in logs [Lau14].

It is imperative that a certificate with a valid SCT but without inclusion into the
CT log should not occur, as it could give rise to significant trust issues regarding
the CT log provider. In the event of such an occurrence, unauthorized or malicious
certificates would remain undetected by the domain owner, thereby increasing the
risk of exploitation. Such logging errors would result in reputational damage for the
organization responsible for managing the "malfunctioning" CT log. Consequently, it
would become evident that there is a need for a new supervisory authority, which
would independently verify the work of the CT logs.

1.2 Goals and Contribution

The objective of this thesis is to ascertain the reliability of SCTs as an indicator of
whether certificates are being logged. The objective is to ascertain whether there are
any certificates that have a valid SCT but are not present in the corresponding CT
log.
This study has two principal objectives. Firstly, a comprehensive dataset comprising
a vast number of certificates will be constructed through the process of scanning
the public internet. Secondly, the reliability of the inclusion process with regard to
certificates that have obtained a promise of inclusion will be evaluated. The aim is to
ascertain whether these certificates are, in fact, included in the CT logs.
In addition to the aforementioned objectives, the project will derive efficient and
automated techniques for verifying the inclusion of specific certificates in the CT logs
on an extensive scale. In addition to evaluating techniques for crawling the public

1.3 Structure 7

internet to obtain suitable certificates, our objective is to provide statistical data
on the reasons why certificates are unable to be verified. Furthermore, we intend to
identify the challenges encountered when auditing CT logs and to propose potential
solutions for improvement.

1.3 Structure

The initial section of the paper sets forth the fundamental technical basics that are
necessary for a more profound comprehension of the ecosystem that lies behind the
CT logs. Subsequently, the methodology employed for the collection of certificates
on a large scale is outlined, along with the procedures utilized for their verification.
Thereafter, the efficacy of these approaches is evaluated through the examination of
corresponding statistics. In light of these findings, the results are displayed. Finally,
a conclusion is drawn regarding the trustworthiness of CT logs, notable issues are
highlighted, which emerged during the course of the research and the future direction
of research in this field is discussed.

1.4 Information on language support

We used Natural Language Processing (NLP)-tools as well as Large Language Models
(LLMs) to create this thesis. All tools were used exclusively to improve the linguis-
tic clarity and readability of the English language, without making any changes
to the content. This support was used to make the thesis accessible to a wider
readership.

2 Background

The following chapter presents the fundamental (technical) details that are essen-
tial for comprehending the subsequent approaches. It offers a succinct overview of
TLS and CAs, as well as a more comprehensive examination of CT logs, which
are not widely known. It is imperative to grasp the operational dynamics of the
CT log ecosystem, and for that, one must possess a certain degree of background
knowledge.

2.1 Transport Layer Security (TLS)

TLS is a cryptographic protocol designed to establish a secure communication channel
over a network, primarily the Internet. It was developed from Secure Sockets Layer
(SSL) and is primarily recognized for its role in securing data transmitted via the
Hypertext Transfer Protocol (HTTP), which led to the establishment of the Hyper-
text Transfer Protocol Secure (HTTPS). TLS ensures the confidentiality, integrity,
and authentication of transmitted data [OHR22]. To achieve these objectives, it
employs the use of encryption, cryptographic hashes, and digital certificates. The
utilization of encryption ensures the confidentiality of the client’s and server’s data,
thereby maintaining the privacy of the communication. Cryptographic hashes and
Message Authentication Codes (MACs) are employed to guarantee that the data
has not been tampered with [NN19]. In addition, digital certificates are required to
authenticate the identity of the server (and, if desired, the client) in order to prevent
clients from communicating with an unintended service or malicious third party. The
aforementioned factors collectively enable the convenient and secure utilization of
online banking services, as well as the seamless installation of software without the
concern of malware [Res18].

TLS relies on symmetric cryptography for the encryption of data transmitted between
the client and the server. Symmetric cryptography is a relatively rapid process;
however, it is not possible to derive a mutual key for the encryption over an unsecure
channel. To avoid the possibility of an unintended third party gaining access to

10 2 Background

the key, a derivation process is employed utilizing asymmetric cryptography. The
advantage of asymmetric cryptography is not only that two parties can communicate
in an encrypted manner over an unsecure channel; it also allows the construction of
a Public Key Infrastructure (PKI), thereby enabling the communicating parties to
authenticate their partner, respectively. The primary disadvantage of asymmetric
cryptography is its relatively slow processing speed, due to the extensive calculations
that are required. Consequently, in order to leverage the benefits of both encryption
types, TLS combines asymmetric cryptography for authentication and key derivation
with symmetric cryptography for data encryption, thereby optimizing the use of both
approaches [SBI13].

To be more precise, TLS employs the use of digital certificates, typically X.509 certifi-
cates, with the objective of establishing trust between communicating parties. It has
become a standard practice for servers to possess digital certificates in order to establish
a connection with TLS. Certificate Authorities (CAs) issue these digital certificates,
which contain the public key of the server in question, along with other identifying
information. During the TLS handshake, the server presents its certificate to the client,
which the client can then verify using the CA’s root certificate, which is distributed
external to the main communication channel [Res18].

2.2 Certificate Authority (CA)

A CA is an institution that is tasked with the issuance and management of digital
certificates. The aforementioned digital certificates can be utilized in cryptographic
systems, such as TLS, to authenticate two communicating parties to each other and
establish trust. A CA serves as a third party, verifying the identity of organizations
or individuals requesting a certificate in order to establish a link between their
public key and their identity. The principal function of a CA is to authenticate the
identity of an entity (such as a website or a server) prior to the issuance of a digital
certificate. In the majority of cases, the entity in question is required to provide proof
of ownership or control over the relevant domain in order to confirm their legitimacy.
Once the identity of an entity has been verified, a digital certificate is issued by the
CA. The certificate comprises the public key, along with other pertinent identifying
information regarding the entity in question, such as the domain name. Additionally,
it includes a cryptographic signature provided by the CA. Subsequently, the entity
is able to demonstrate its authenticity in TLS with the aforementioned certificate
[BH17][AL21]. It is fundamental to the functioning of a CA in a cryptographic
system like TLS that it can be trusted by all communication partners beforehand.
This trust is established "out-of-band," which requires that browsers and operating
systems have a technique to verify the CA’s authority and integrity without the use
of cryptography. This is achieved by distributing root certificates. To maintain this
public trust, CAs must adhere to strict guidelines and refrain from any misbehavior
[Chi21].

2.2 Certificate Authority (CA) 11

2.2.1 Root Certificate Authorities (Root CAs

A root CA represents the most fundamental level of trust within the PKI framework.
These organizations distribute root certificates by installing them directly in web
browsers or operating systems. The certificate contains the public key of the CA
and is signed by the CA itself. Such a certificate is therefore referred to as a "self-
signed" certificate. This provides the fundamental level of trust that is necessary to
verify the trustworthiness of all certificates that are signed by this CA. There are
numerous Root CAs that issue self-signed certificates; however, only a select few are
sufficiently qualified and trusted to issue certificates that can authenticate servers on
the public Internet. When a browser encounters a certificate issued to a domain name
or server, it verifies that the issuing certificate is one of the aforementioned CAs [Tec10].
Nevertheless, as the trustworthiness of root CAs cannot be proven by cryptographic
measures, it is essential to exercise caution and manage the trust placed in them
accordingly. They wield considerable influence within the PKI system. If a root CA
engages in fraudulent activities, such as issuing illegitimate certificates, it can result
in a breach of trust. Consequently, it is imperative that CAs adhere to the highest
standards of conduct and procedure in order to guarantee the integrity and legitimacy
of their authority and the certificates they issue. In the event of a CA’s misbehavior,
there is a significant risk of critical security and privacy breaches, including man-in-the-
middle (MITM) attacks and phishing schemes [CA-12].

2.2.2 Intermediate Certificate Authorities

In order to enhance security and limit the exposure of root CAs, the majority of
CAs operate with one or more intermediate CAs. Intermediate CAs act as mediators
between root CAs and end-entity certificates (certificates issued to organizations and
individuals). The root CA issues a certificate to the intermediate CA, which then
issues certificates to organizations and individuals. This structure constitutes a "chain
of trust," whereby the intermediate CA is deemed trustworthy if it can be traced back
to the root CA. The use of intermediate CAs offers several advantages. For instance, it
constrains the potential impact of a compromised CA. In the event of an intermediate
CA being compromised, the root CA can revoke the intermediate’s CA certificate
without directly affecting the root CA or other intermediate CAs. Additionally, inter-
mediate CAs enable the root CA to delegate certificate issuance, allowing for a more
distributed approach to certificate management [int].

2.2.3 Certificate Revocation

In certain exceptional cases, it may be necessary to revoke a certificate before its
expiration date. This is typically the case when a certificate has been compromised,

12 2 Background

the domain owner has lost control over the domain, or the certificate was issued
fraudulently.

Certificate Revocation Lists (CRLs)

A CRL is a list consisting of revoked certificates, which are therefore invalid. It
is feasible for browsers and operating systems to routinely download and examine
CRLs to ascertain whether a particular certificate has been revoked. This approach
results in a certain degree of latency, as there is a delay between the revocation of
a certificate, the updating of the list, and the subsequent checking of the certificate
[BSP+08].

Online Certificate Status Protocol (OCSP)

OCSP is a service that enables browsers and operating systems to ascertain the
validity of a certificate in real time. Upon establishing a connection with a server, a
client may request the status of the server’s certificate from the CA. In the event that
the certificate has indeed been revoked, the service will indicate that a revocation
has occurred. This approach offers a more expedient and efficient solution than
CRLs; however, it does impose the necessity for the CA’s infrastructure to remain
continuously responsive to such requests [SMA+13].

2.3 Certificate Transparency Logs (CT Logs)

In 2011, DigiNotar, a Dutch certification authority (CA), was the subject of a cyber-
attack. A significant security breach resulted in the issuance of over 500 illegitimate
digital certificates [Mil11]. It is alleged that the attack was carried out by an Iranian
hacker who successfully exploited vulnerabilities in DigiNotar’s infrastructure. The
aforementioned illegitimate digital certificates were utilized in MITM attacks, largely
targeting Iranian internet users. The interception of communications included email
correspondence and private browsing sessions. As a consequence of the incident, nearly
300,000 users of Google’s service were potentially exposed to the risk of surveillance
or impersonation by the attacker [Art11].

The incident occurred due to inadequate security measures employed by DigiNotar,
which resulted in the unauthorized issuance of digital certificates going undetected.
The fraudulent certificates remained undetected for approximately one and a half
months before being identified. The breach had far-reaching consequences, affecting
not only individual users, but also the reputation that DigiNotar had built as a
CA. Ultimately, this led to the company’s bankruptcy. Of greater consequence, the
incident brought to light deficiencies in the extant PKI model. This demonstrated

2.3 Certificate Transparency Logs (CT Logs) 13

that a CA that is misbehaving or has been compromised can issue certificates without
being noticed. Had there been a mechanism for monitoring all issued certificates for
the public, the fraudulent certificates could have been identified significantly sooner,
thereby limiting the extent of the damage [Wol16].

It was thus deemed necessary to construct a framework that would enhance the
ability to identify falsely issued certificates, as security breaches are an inevitable
consequence of any system, regardless of the strength of its defenses.
In response to the identified shortcomings of the PKI, CT Logs have emerged as a po-
tential solution following the DigiNotar incident. They maintain a publicly accessible
registry of all certificates issued by CAs, thereby enabling real-time monitoring of CA
activities. Consequently, they make it possible to detect falsely issued or fraudulent
certificates with immediate effect. In consequence, it is not necessary to place inherent
trust in a CA; rather, one may examine their work. [LKL13]

CT logs achieve their objective by requiring all CAs to submit all of their issued
certificates to public, append-only logs. Such logs may be monitored and audited,
thereby enabling browsers, operating systems, organizations, and users to verify the
legitimacy of a certificate and ascertain whether it has been tampered with. The
transparency and accountability of every CA’s operations is enhanced through the
publishing of their work in CT logs. It provides the internet community with the
ability to examine the actions of CAs in greater detail.

One of the most significant advantages of CT logs is their capacity to detect is-
sues with certificates at the point of issuance. In the event that a fraudulent certificate
is issued by a CA for a domain of which the domain owner is unaware, it can be
promptly identified and conveyed to the relevant authorities. Furthermore, the absence
of a log entry for a given certificate would be cause for suspicion. Consequently, it is
possible to impose penalties on CAs that engage in misbehavior by reducing their
reputation within the ecosystem. Browsers are capable of rejecting certificates that
have not been logged, thereby ensuring that only those visible to the public are trusted
[Sol19][Int13][LLK13].
For CT logs to fulfill their intended purpose, it is necessary to implement a data
structure that is append-only. This structure must be able to demonstrate that a
certificate has been logged and that no alterations have been made to the rest of the
log.

2.3.1 Merkle Trees

Merkle Trees were identified as a suitable data structure for meeting the requirements
for CT logs. Merkle Trees are capable of guaranteeing immutability and efficient
verification. Merkle Trees provide a method for maintaining append-only logs while
simultaneously ensuring that any alterations, deletions, or additions to the log entries

14 2 Background

are detectable by the monitoring party. A Merkle Tree is a binary tree in which
each leaf node consists of the cryptographic hash of a data block. In the context of
CT logs, the aforementioned data blocks are represented by digital certificates. The
hash of each non-leaf node results from the combination of the hashes of its two
child nodes, thus establishing a hierarchical structure in which every interior node is
derived from the hashes of its children. This process continues upwards until the tree
head is reached. The tree head is a cryptographic representation of the entirety of
the data contained within the tree.

The properties of cryptographic hashes ensure that any alteration to a single node will
affect all nodes above it, ultimately resulting in a change to the tree head. This allows
for the straightforward detection of any tampering. Furthermore, this also applies to
the order of the leaf nodes. In the context of CT logs, this implies that if any certificate
is altered, removed, or added to the log without compliance with the prescribed logging
procedure, the tree head will undergo a modification, thereby indicating a discrepancy.
Merkle Trees allow for the efficient verification of log integrity at any given point in
time, utilizing the tree head [Wan20].

Inclusion proof

In order to ascertain whether a specific certificate is present within the tree, it is
sufficient to obtain the hash value of the certificate in question and the hashes of the
sibling nodes traversed along the path from the leaf node to the tree root. The hash of
the certificate can be calculated independently, and the log provides all the necessary
hashes of the sibling nodes. This enables the client to perform the calculation of the
tree head by themselves. If the computed tree head matches the given tree head,
the client can be certain that the certificate is indeed part of the tree and that no
tampering has occurred. As the operator of the Merkle Tree is only required to provide
a minimal amount of data (the hashes along the path to the tree head) in order to prove
their integrity, the process is highly efficient [Wan20].

Consistency proof

As previously stated, Merkle Trees also enable the generation of a consistency proof.
This process serves to verify that a newly created tree, which may contain new
entries, still includes all the previously logged data. In order to verify the consistency
of a current log (new tree head) in relation to an older tree head, the client must
have access to the latter in advance. From the log, the client retrieves the new tree
head, along with the hashes of the recently added entries and the nodes required
to calculate the intermediate hashes from the old to the new tree head. With this
information, the client can then compute the new tree head. If it matches the actual
new tree head, the client can verify the log’s consistency, particularly ensuring that no

2.3 Certificate Transparency Logs (CT Logs) 15

entries have been altered or removed and that new entries have been added correctly
[Wan20].

2.3.2 Procedure

Upon receiving a request from a domain owner for a certificate, a CA transmits
the issued certificate to a CT log operator, who is typically selected by the CA
itself. While CAs typically undertake this responsibility, any individual may request
the inclusion of their certificate, provided that it was issued by a trusted CA. To
assist with this process, CT log operators maintain lists of trusted root CAs. Upon
submission of the certificate, the CT log responds with an inclusion promise, agreeing
to record the certificate within a specified timeframe, known as the Maximum Merge
Delay (MMD). It is imperative that this promise be embedded within the certificate,
thereby enabling verifying parties to verify that the certificate has been logged in an
appropriate manner. Subsequently, the certificate is returned to the domain owner.

To validate the certificate’s inclusion, a party may rely on the attached inclusion
promise or conduct additional verification. A cryptographic proof of inclusion can be
requested directly from the CT log using the details provided in the aforementioned
promise. Provided that this request is made subsequent to the Maximum Merge
Delay (MMD), the CT log is obliged to confirm the inclusion. Failure to comply with
these procedures may indicate that the CT log is misbehaving, which could result in
consequences for the operator.[Cer24]

2.3.3 Signed Certificate Timestamps (SCT)

Certificate Transparency logs are confronted with a considerable challenge in meeting
the expectations of certificate authorities (CAs) and domain owners, namely to pro-
vide immediate inclusion proof for newly issued certificates. Given the global scale of
the Internet and the significant daily volume of certificate issuance, CT logs handle
millions of submissions on a daily basis. Due to the technical limitations associated
with instantaneous appending of every certificate to the Merkle Tree structure, SCTs
provide an effective solution. SCTs serve as immediate assurances that a certificate
has been accepted by a CT log and will soon be publicly available, thereby mitigating
delays caused by inclusion constraints.

An SCT is a compact, cryptographically signed data structure that is produced
by a CT log and issued to the CA, thereby guaranteeing the future inclusion of a
certificate. Each SCT possesses a set of distinctive elements that collectively establish
this assurance.

The first of these is a log ID, which serves as a unique identifier linking the SCT to the

16 2 Background

corresponding CT log that issued it. Subsequently, a timestamp indicates the precise
moment at which the SCT was generated, thereby providing a reliable reference point
for the initial request by the CA for logging. The inclusion of this timestamp is of
crucial importance, as it is a prerequisite for the Maximum Merge Delay (MMD).
Lastly, the digital signature created by the CT log serves to authenticate and verify
the integrity of the SCT. The digital signature, created using the log’s private key,
can be validated by any party in possession of the corresponding public key, thereby
ensuring the SCT’s credibility.

These combined components serve as a binding commitment from the CT log to
the CA, promising that the certificate will be included and accessible to the public
within the MMD. The SCT is embedded into the certificate and transmitted to the
client, thus enabling any recipient to view and verify it. This arrangement allows
CAs to provide immediate proof of the certificate’s pending log inclusion, even if the
certificate has not yet been added to the Merkle Tree.
When the certificate is subsequently added to the Merkle Tree, the SCT’s information
is essential for confirming that the log has honored its commitment to timely inclusion
[Lau14].

2.3.4 Precertificates

Another method employed by CT logs to prevent CAs from engaging in improper
conduct is the utilization of precertificates. This mechanism guarantees that CAs
are unable to modify a certificate in any manner after the CT log has promised to
including it. In order to achieve this, the CA initially generates a certificate that
contains a special poison extension. A certificate that possesses this extension is thus
deemed invalid and should not be accepted as a trusted certificate. This version of
the certificate, designated a "precertificate," is not intended for utilization in a TLS
handshake and is typically not disseminated by the domain proprietor.

Upon issuance of a certificate to a domain owner, a CA signs the certificate, in-
cluding the aforementioned extensions. Consequently, if specific extensions undergo
alteration, the signature is also modified. In contrast, CT logs generate their signature
by taking into account the entirety of the certificate, excluding the poison extension.
The signature for the leaf certificate and precertificate, therefore, differ; however, the
signature generated by the CT logs remains consistent.

The CT log then returns an SCT, calculated over the precertificate, to the CA.
In order to produce a fully functional leaf certificate, the CA must first remove the
poison extension, then append the provided SCT, and finally update the certificate’s
signature. Consequently, during a TLS handshake, the user will receive the leaf cer-
tificate instead of the precertificate.

2.3 Certificate Transparency Logs (CT Logs) 17

To verify the signature in the SCT, a specific adjustment is required. In order
to generally verify a signature, it is first necessary to reconstruct the content that
was used to produce it. Consequently, users must remove any SCTs embedded within
the certificate to accurately recreate the original content, the precertificate.

This technique ensures that, apart from the SCTs included within the certificate, no
other modifications can be made by the CA without alerting users. In the event of any
alteration occurring after the CT log has issued the SCT, the signature will not be
verifiable, indicating that the CA is misbehaving [Wan20].

2.3.5 API

CT logs provide API interfaces to facilitate communication and interaction. These
interfaces offer the ability to perform a variety of functions, including retrieving the
size of the Merkle Tree, obtaining the public key associated with the CT log, request-
ing the inclusion of certificates, acquiring a list of all trusted root CAs, retrieving a
specific log entry based on its position, and, most notably, obtaining a cryptographic
proof confirming the existence of an entry when provided with the entry’s hash. Each
log entry consists of a number of distinct components. The entry comprises predefined
constants, the timestamp at which the submitted certificate was accepted by the CT
log, and the certificate itself. In the event that the entry in question is a precertificate
and not a leaf certificate, the entry will also include the hash of the certificate issuer’s
public key.
Furthermore, the timestamp within the entry must match the timestamp of the
corresponding SCT [LLK13].

To ensure the continued reliability of CT logs, rate limiting is employed when the
volume of requests from individual users exceeds a specified threshold. The rate
limiting and maximum response size are set according to the specifications of the log
provider in question [rat22][rat23].

2.3.6 Monitoring

A notable benefit of CT logs is their verifiability for users, which is made possible
through the use of Merkle Trees and the objective of ensuring 100% uptime by log
providers.
Monitors observe logs to guarantee their proper functioning and track certificates of
interest. In order to achieve this, it is necessary for a monitor to review each new
entry in every log that it oversees. Some monitors may even choose to retain copies
of entire logs.

18 2 Background

Individuals interested in developing a monitor have the capability to do so, en-
abling continuous oversight of CT logs to confirm compliance on a large scale. A
significant number of monitors are designed to perform consistent scans of one or
multiple logs, whereby they request periodic consistency proofs for the Merkle Trees
in use. Additionally, some monitors verify that certificates are included in the log
in a timely manner with regard to the MMD [LLK13]. Furthermore, monitors may
exchange recent updates and proofs provided by the CT log to ensure the log’s
information is globally consistent [Lau14].
Monitors can be deployed to achieve a variety of objectives. They may track log
activity to verify that, with each update, the prior version of the Merkle Tree re-
mains unaltered. Additionally, they can confirm that new entries correctly generate
the elements necessary for the consistency proof. Some monitors also offer services
tailored to domain owners, such as notifying them when a certificate is issued for
their domain. Therefore, if a certificate is issued for a domain without the owner’s
consent, the monitor can notify the corresponding CA to revoke that certificate
[mon].

2.3.7 Auditing

While monitors are responsible for ensuring that logs are append-only and consistent
across the network, auditors are tasked with examining the actual content of the
logs. Their role is to investigate instances of misissued certificates or the omission of
expected certificates. Monitors retrieve only the certificates that have been appended
to the log, and thus are unable to verify the absence of expected certificates. In
contrast, auditors are tasked with not only verifying the validity of observed SCTs
but also ensuring that the promises these SCTs represent have been fulfilled. This
verification is accomplished by requesting inclusion proofs from the corresponding
CT log. In the event that domain owners do not proactively examine for any absent
certificates, undetected gaps may remain unidentified by a monitor.

The auditing of an inclusion proof for each certificate encountered by a user could
potentially compromise privacy, as it would likely reveal their browsing history. Con-
sequently, in the current CT implementation, the majority of clients avoid this crucial
examination to safeguard user privacy [MDO+22].

2.3.8 Handling by browsers

In order to fully utilize the enhanced security afforded by CT logs, certain browsers
have instituted policies that mandate the embedding of valid SCTs within certificates.
Each browser is at liberty to define its own criteria for the acceptance of a certifi-
cate. For example, Mozilla Firefox currently imposes no requirements, whereas other
browsers, including Chrome/Chromium [chr], Safari [app], and Brave [bra], mandate

2.3 Certificate Transparency Logs (CT Logs) 19

the presence of at least two SCTs. However, the majority of browsers only verify the
SCT’s signature. If the signature is deemed valid, the SCT is then interpreted as a
promise of inclusion, thereby classifying the certificate as trustworthy.
Conversely, if a certificate fails to meet the established requirements, the connection
is considered untrustworthy and is therefore not established. In such instances, an
error message is displayed, enabling the user to determine whether to proceed with
the connection or terminate the session.

A primary advantage of solely verifying the SCT signature, as opposed to requesting
a comprehensive proof of inclusion from the associated CT log, is that it minimizes
the time required to establish a valid connection. This is because the process of
validating a signature is considerably faster than querying a server for each SCT in a
certificate. Furthermore, the request for inclusion proofs may potentially compromise
privacy. In addition to basic validity checks, Chrome/Chromium has initiated an
audit of a limited number of certificates collected from its users, with the objective of
balancing security with user privacy. The determination of whether inclusion proofs
are conducted is based on the individual user’s "Safe Browsing" settings [ST20][chr22].
It remains to be seen whether other browsers will adopt similar mechanisms to audit a
portion of certificates for inclusion proofs from CT logs.

3 Approach

The objective of this thesis is to evaluate the reliability of STCs in guaranteeing
the logging of certificates in CT logs. In order to answer this question, we present
an approach in the following chapter for the collection and analysis of certificates
from the open internet on a large scale. We analyze the certificates with a partic-
ular focus on the validity of SCTs and the inclusion of the corresponding CT logs.

Top one million
domains

...

...

(a)
Crawling certificate

datasets

(b.1)
Scanning CT log

(b.2)
Develop verification

techniques
(c)

Verification through
combined techniques

Figure 3.1: The methodology employed to ascertain the compliance of SCTs is as
follows: (a) The gathering of certificates, (b.1) the downloading of an
entire CT log, (b.2) the development of a verification process based on
the available data, and (c) the verification of the gathered certificates
using a combination of the aforementioned processes and other relevant
procedures.

The methodology presented in this thesis is outlined in three main stages, as illustrated
in Figure 3.1. The initial step is to gather X.509 certificates on a large scale from across

22 3 Approach

the internet, ensuring a comprehensive and representative dataset. This collection
is of great importance to us, as it may lead to significant insights and, potentially,
the discovery of discrepancies between SCTs and CT logs. Secondly, following the
acquisition of the aforementioned certificates, a verification procedure is developed for
determining the inclusion of each certificate in its corresponding CT log based on that
certificate’s SCT. This involves querying the CT logs to ascertain the certificate’s
inclusion and confirm that it has been correctly logged in accordance with the SCT.
The discovery of a single certificate with a valid SCT but absent from its corresponding
log would provide evidence of misbehavior on the part of the CT log. Thirdly, the
effectiveness of the developed tools was evaluated in conjunction with the SCTs
identified in the collected certificates.

While the absence of evidence that a CT log misbehaves does not constitute proof that
SCTs are always reliable, a comprehensive investigation with no significant findings of
misbehavior would provide substantial reassurance that SCTs are highly trustworthy.
With this procedure, we should be able to identify any anomalies that have the
potential to negatively impact trust in the CT ecosystem, ultimately contributing to
the evaluation of the overall integrity of SCTs.

3.1 Gathering of certificates

In order to construct a comprehensive and representative dataset consisting of a
significant number of certificates, a variety of methods were employed to scan, retrieve,
and collect certificates from the Internet.

3.1.1 IPv4

To ensure comprehensive coverage of internet infrastructure, one of the methods
employed for the acquisition of certificates involved the comprehensive scanning of
the entire IPv4 address space. To this end, we utilize ZMap, a highly efficient network
scanning tool capable of scanning the entire IPv4 address space, with the objective of
identifying hosts that respond to the default port for HTTPS 443. This methodology
enables the construction of a list of hosts from which a TLS certificate can be obtained.
ZMap is an effective tool for rapidly identifying active servers, making it well-suited
for large-scale internet scans.

Subsequently, ZGrab, an additional tool from the ZMap project, is employed to
retrieve the X.509 certificates from the identified servers. ZGrab is a specifically
designed application-layer scanner, which enables the downloading of TLS certificates.
This is achieved by establishing a connection with the server and completing the
TLS handshake. This approach allows us to collect a diverse set of certificates from a
broad range of hosts, representing different organizations, geographic regions, and
security configurations. The combination of ZMap and ZGrab is an effective method

3.2 Verifying inclusion of certificates 23

for gathering a comprehensive data set of certificates from across the entire IPv4
space.

3.1.2 Tranco’s one million

An alternative approach is to concentrate on the most popular websites on a global
scale. In this regard, the Tranco list is deemed an appropriate source of information. As
a "researcher-oriented ranking," it aggregates and ranks websites based on popularity
across multiple sources, resulting in a ranking of the top one million domains. Tranco
is particularly well-suited to academic research as it is relatively stable and resistant to
manipulation in comparison to other rankings [LPVGT+19].

To establish a connection with each domain and download the corresponding X.509
certificate, we utilize OpenSSL, a widely utilized cryptographic toolset for Linux. This
method allows us to ensure that we capture certificates from the most heavily visited
websites. This approach offers insight into the security practices of high-traffic websites,
rendering the certificates collected through this method valuable for evaluating the
SCT mechanism.

By focusing on the most visited domains, this approach enhances the compre-
hensive IPv4 scanning by additionally capturing certificates from high-value tar-
gets.

3.2 Verifying inclusion of certificates

Once a substantial number of certificates have been obtained from a variety of online
sources, the subsequent essential step is to ascertain whether the certificates have been
correctly entered into the CT logs, as indicated by their SCTs. This process involves
a detailed examination of each certificate and its associated SCTs. The objective is
to ascertain the CT log that issued the SCT and to verify the certificate’s inclusion
in the designated CT logs. This approach ensures the legitimacy and validity of the
SCTs.

3.2.1 Google’s Go library

In order to verify the authenticity of digital certificates and their corresponding SCTs,
we employ the Google Go library for Certificate Transparency. The library, developed
by Google, has been designed with the specific purpose of working with CT logs. It
provides a comprehensive suite of tools for their management. The library offers a
variety of functions, including data encoding, interaction with CT log APIs, extensive
log scanning, and the capability to host one’s own CT log. The versatility of this

24 3 Approach

tool renders it an immensely useful apparatus for the retrieval of CT logs and the
authentication of SCTs.

CT log on local machine

The first method entails downloading the entirety of the CT logs to a local machine
for subsequent examination. This allows for rapid and autonomous confirmation of
the inclusion of certificates. To achieve this, the "sctscanner" tool from the Go library
is employed. The tool is capable of retrieving each entry from a specified CT log,
thereby allowing the user to process the retrieved certificate in a manner that suits
their requirements.

To enhance the efficiency of this process, a file is created for each certificate obtained,
with the certificate’s hashed public key serving as the file name. The content of
each file is minimal in order to utilize the least amount of storage space possible,
containing only the entry number of the corresponding certificate in the CT log.
This design allows for rapid storage and retrieval, enabling straightforward verifi-
cation of inclusion by matching the certificate fingerprint with the locally stored
files.

The verification process is as follows: when a certificate is provided, its SCT identifies
the CT log in which it should be included. The certificate’s hashed public key is
calculated and checked against the locally stored files corresponding to that CT log. If
a file with the same name as the fingerprint of the certificate exists, it can be concluded
that the certificate is indeed included in the log.

sctchecker

In addition to downloading entire logs, the Google Go library provides the "sctchecker"
tool, which is designed to facilitate the process of verifying SCTs from a given
certificate. The tool permits the input of a PEM file, and returns the status of
any SCTs identified in the certificate under examination with regard to verifica-
tion.

The "sctchecker" tool employs a variety of components within the Go library to
facilitate communication with CT logs and perform SCT verification against the
intended log.

3.2.2 Own Python Code

As an alternative to Google’s "sctschecker," we developed our own Python script to
verify SCTs directly through the CT log’s API. This bespoke solution enables us to
manage the entire verification process independently, thereby affording us the flexibility

3.3 Advantages and Disadvantages 25

and transparency into the underlying steps that we require. As a result, we are able
to exercise greater control over the manner in which the verification is conducted.
This is especially beneficial in instances where the process encounters an obstacle and
further troubleshooting or investigation is necessary.

A notable benefit of custom-developed code is its capacity to provide comprehensive
diagnostic information. By performing each step of the verification process indepen-
dently, such as querying the log, analyzing the SCT data, and checking the inclusion
status, potential issues can be identified at each stage of the process. This allows for
the isolation of the source of any issues, whether they are related to the SCT, the
certificate itself, or the log. This enables us to identify issues and refine the verification
process.

A further advantage of this methodology is the capacity to generate statistical data
and reports on the outcomes of the verification process. As we oversee the entirety of
this process, we are able to obtain comprehensive data regarding each verification,
including success rates and the specific types of errors encountered. This enables us
to conduct a more detailed analysis and to obtain more precise metrics regarding the
performance and reliability of SCTs and CT logs.

3.2.3 Censys.io

In addition to the aforementioned methodologies, we were granted research access
to Censys. The Censys platform offers a comprehensive repository of internet data,
including detailed information about TLS certificates. In addition to scanning the
IPv4 address space, the tool also scans parts of the IPv6 address space, thereby
providing a more comprehensive view of the internet’s certificate infrastructure
[DAM+15].

By drawing upon the vast repository of data made available by Censys, we are
able to examine certificate information that could not be processed by other tech-
niques.

3.3 Advantages and Disadvantages

The following section will present an overview of the advantages and disadvantages
associated with the various techniques employed during the verification process. These
qualities are considered in regard to their ability to provide the information required
for the purposes of this thesis.

26 3 Approach

3.3.1 CT log on local machine

The second and third approaches are dependent on the API of the CT logs, which
correspond to the SCTs that require verification. Consequently, the efficacy of these
approaches requires that the API of the CT log maintain optimal uptime and a
reasonable response time. This is not a guaranteed condition, particularly in the case
of older CT logs. Such logs frequently possess high latency and/or low uptime, or, in
extreme cases, are entirely unavailable. In addition, the inclusion proof requires the
issuer’s certificate, which must be available for the other two techniques to be applicable.
In the absence of the requisite data, it is not possible to calculate the appropriate
hash for the inclusion proof request. It is imperative that the issuer’s certificate be
downloaded in advance or in a timely manner. This presents a significant challenge, as
there is no publicly accessible repository of issuer certificates that can be downloaded
in advance. Additionally, our testing machine has experienced instances of blocked
traffic from the servers that provide issuer certificates.

The aforementioned issues are not present when CT logs are stored locally. In this
approach, there is no reliance on an API, and requests are not sent via the network;
instead, they are examined in a directory on the local machine. This represents
a significant time-saving process. Furthermore, the need for issuers’ certificates is
obviated by the ability to identify logged certificates through alternative means, such
as their corresponding fingerprint. It can be reasonably deduced that a local copy
of the CT log would result in a notable reduction in the difficulties encountered.
However, for this to be a viable solution, it is necessary to download the entirety of
the CT log, which is a time-consuming and space-intensive process, particularly given
that a single CT log may contain hundreds of millions of certificates. Consequently, it
is essential to download the CT log in advance to ensure its availability for use, a
process that is once again highly dependent on the API, specifically in terms of its
uptime and response time.

3.3.2 sctchecker

This tool was developed by Google and is in accordance with the organization’s
established standards of quality. This indicates that the code has been subjected to
continuous improvement and rigorous testing for a multitude of potential scenarios.
It is, therefore, a highly reliable tool in this context. It can be reasonably assumed
that the tool’s output is reliable and accurate.

The tool was designed to be universal and to accommodate every potential scenario,
which makes it a highly robust and versatile tool. However, its complexity and breadth
of functionality may not be optimal for our specific use case. The output is not easily
accessible and requires post-processing to yield the desired information. This process
is time-consuming, as it involves converting the output to a usable format. Compared

3.4 Combination of different techniques 27

to the Python code, the sctchecker is more comprehensive, covering additional use-
and edge-cases.

3.3.3 Own Python code

In the context of our research, we developed an application that is tailored to our
specific requirements. This implies that the application is limited in terms of its
functionality, yet it is sufficient for achieving the desired outcome for our research.
As our study is conducted by a limited number of researchers, we lack the capacity
to exhaustively test our own code and identify exceptional and infrequent edge cases.
It is therefore reasonable to assume that the code inhibits the occurrence of some
bugs.

By controlling the entire verification process, it is possible to identify precisely
when problems or errors occur. This allows for the collection of sophisticated statis-
tics about certificates, SCTs and CT log behavior. Additionally, by developing the
code ourselves, we can ensure that it is as efficient as possible for our research
purposes.

3.3.4 Censys.io

Censys was initially conceived as a universal tool. For the purpose of gathering
certificates and verifying their inclusions. To this end, we were able to procure a
researcher’s license, which affords us restricted access to the comprehensive database.
Unfortunately, the limitations are such that we are unable to perform either of the two
functions. Our contingent of 25,000 requests is insufficient for large-scale, automated
processing of certificates.

Nonetheless, we are grateful for the opportunity to utilize this service, as it allows us
to enhance our code and identify solutions to certificate-related issues on a limited
scale.

3.4 Combination of different techniques

As previously discussed, the various techniques possess distinct advantages and dis-
advantages, which, in part, complement one another. Consequently, the techniques
are employed in conjunction with one another, rather than being limited to a single
approach. It is evident that both our Python code and the sctchecker are capable
of verifying any SCT, provided that the API is accessible. In contrast, the local
CT log approach necessitates the complete download of the corresponding CT log
in order to verify a single SCT. Furthermore, it should be noted that our own
code is more time-efficient than the sctchecker, although it may not be capable of

28 3 Approach

handling all potential scenarios and is vulnerable to instances of software malfunc-
tion.

Accordingly, the techniques are employed as follows. Firstly, our own Python code
and the local CT log are employed in conjunction with one another. This entails that
for each SCT that is identified and signed by a CT log that has been downloaded
in advance, the inclusion of that SCT in the local log is verified. In the event that
the SCT is signed by a log that has not been locally saved, a request for inclusion
verification is initiated.

As the verification process is ongoing, any certificates that cannot be verified are
flagged for subsequent attention. Once all certificates have been processed using
the Python code, the SCTchecker is employed to attempt to verify the certificates
where the initial verification was unsuccessful. Certificates that remain unverified are
included in our statistical analysis.

This approach allows us to leverage the strengths of each technique while miti-
gating the inherent limitations of each. By employing the local log and Python
code, we can rapidly verify certificates, although we may encounter unforeseen is-
sues. To address these potential shortcomings, we utilize SCTchecker to perform
a secondary examination of certificates identified as problematic in our Python
code.

4 Implementation

This chapter provides a detailed examination of the practical application of the
approach outlined in chapter 3. The following section provides a more detailed ex-
planation of each step, accompanied by an overview of the manner in which the
approach is conveyed in the actual implementation. In this project, the code com-
prises both Linux command-line instructions and Python scripts, which provide a
diverse toolset. The complete code listings are available in the appendix for refer-
ence.

4.1 Gathering of certificates

In order to obtain a substantial sample of certificates, two principal methods are
employed. First, we utilize ZMap to scan the IPv4 address space for servers that
offer TLS connections. Once the servers have been identified, the actual retrieval of
the relevant certificates is managed using ZGrab. The resulting certificates provide a
diverse dataset of the broad IPv4 space. In addition, the Tranco list was also used,
which ranks the top 1 million most popular websites. This approach also considers
certificates from the internet’s most frequently visited domains. For this collection,
OpenSSL is deployed to connect to the websites and download the corresponding
certificates.

4.1.1 IPv4

The initial step is to utilize ZMap, a project designed for fast and effective scanning of
the IPv4 address space. This allows us to identify which hosts within the IPv4 space
are active and, more specifically, which hosts have an open port 443. Port 443 is the
standard port for HTTPS connections and typically provides an X.509 certificate if it
is active, as it is a prerequisite for establishing secure communication via TLS. The
identification of open port 443 is exclusively handled by ZMap. By passing port 443
as an argument, ZMap performs a systematic scan of the entire IPv4 address space,
searching for servers that are responding on this port. Consequently, a comprehensive

30 4 Implementation

list of IP addresses corresponding to relevant servers is generated. Nevertheless, at
this point in the process, the only information available regarding these servers is
that their port 443 is not closed. No further details about their services or certificates
have been identified.

The second phase of the process involves establishing a connection with each of
the identified IP addresses with the objective of downloading the associated digital
certificate, should one be available. This is achieved through the utilization of ZGrab.
ZGrab is a tool that is capable of initiating a handshake with the server in question,
thereby enabling the collection of relevant details regarding both the server and the
provided service. By specifying the TLS protocol and port 443 as arguments, ZGrab
attempts to perform a TLS handshake with each of the servers on the given list. In
the event that the server in question provides a digital certificate, ZGrab will retrieve
it and store it locally.

The results of the comprehensive scanning process are documented in a JSON file,
with each scanned OP address represented by an individual entry. The aforementioned
entries contain a variety of crucial data points, including the success or failure of the
certificate retrieval, the unaltered X.509 certificate data, the certificate’s fingerprint,
and numerous other pertinent details. This structured output facilitates further
analysis and processing of the certificates.

Prior to undertaking further analysis of the saved certificates, it is essential to undertake
preprocessing. The raw base64-encoded certificates are initially converted into PEM
format, which is widely recognized and supports a variety of verification processes.
This includes all of the planned processes. Therefore, storing the certificates in this
way allows for multiple validation steps to be performed on the same file without
requiring repeated conversions.

4.1.2 Tranco’s one million

In conducting our research, we employ the Tranco list, dated August 26, which is
a regularly updated ranking of the top one million domains globally. Each entry in
the list represents a single domain. The Tranco list provides a comprehensive and
robust dataset for the acquisition of certificates. The precise methodology underlying
the Tranco list ranking process is beyond the scope of this thesis. However, it is
noteworthy that the list is specifically designed for research purposes, as it combines
data from multiple sources to provide a stable and manipulation-resistant ranking of
the most visited websites.

The subsequent phase of the process is to obtain the digital certificates from each do-
main. In order to achieve this, we utilize the OpenSSL tool, which is a well-established
cryptographic tool that is commonly pre-installed on most Linux systems. OpenSSL
provides secure communication by offering open-source code for the management of
certificates and the performance of TLS/SSL handshakes. In the process described

4.2 Verifying inclusion of certificates 31

here, OpenSSL was used to establish a connection over TLS with each domain from
the list on port 443, which is the default port for HTTPS. The X.509 certificates
provided by the server were then downloaded.

Each retrieved certificate is stored in a distinct file. The filename is designated
according to the domain name of the corresponding website. The certificate is stored
in PEM format, which encodes the certificate in a base64 representation, facilitating
subsequent processing. When feasible, OpenSSL acquires the entire certificate chain,
which entails not only the leaf certificate (i.e., the server’s certificate) but also the
intermediate and root certificates from the associated CA. This approach ensures
that the downloaded files provide a full context for validating the authenticity of the
certificates.

The process of utilizing OpenSSL to download the certificate chains was initiated via
a shell command, which combined multiple tools and functions. Initially, the order of
domains is randomized to ensure a balanced and unbiased collection process, wherein
no particular domains are favored based on their original sequence. Furthermore,
multiple tasks are conducted in parallel. The implementation of parallelization has
the effect of markedly enhancing efficiency, allowing for the execution of up to 16
downloads in parallel, and thus reducing the time required to obtain certificates from
the given one million domains.

In the command, the OpenSSL application is instructed to attempt a TLS handshake
with each domain on port 443. By employing the -showcerts flag, it is ensured that all
certificates, including intermediates, are displayed. The -servername option is utilized
to facilitate the Server Name Indication (SNI), thereby ensuring that certificates are
retrieved correctly even from hosts that utilize multiple domain names under the same
IP address. A limitation is placed on the time it takes for a connection to timeout,
which helps to avoid lengthy delays with unresponsive servers. Finally, the certificate
is extracted from the output and saved to a PEM file.

4.2 Verifying inclusion of certificates

To confirm the accuracy of the SCTs on each certificate, a variety of methods are
employed. Some approaches are conducted using a well-known GitHub repository
developed by Google employees. An alternative approach is to develop custom Python
code. The final approach, which employs Censys, entails querying the online database
manually when necessary.

4.2.1 Google’s Go library

Both approaches to Google’s Go library use the same repository. We will not
describe the concrete functionality of the code, only how we use it for our pur-

32 4 Implementation

Figure 4.1: The average time required to verify a single certificate is presented in
logarithmic scale for each of the techniques. It should be noted that it is
unclear whether the Python code in question contains errors that could
result in it taking 1.04 seconds to run without completing its intended
function.

poses.

CT Log on local machine

This approach is fundamentally distinct from all others. The objective is to download
the entire CT log. This results in the preservation of each distinct representation
of a certificate on our own machine. This approach offers a more straightforward
method for verifying the presence of a certificate within a specific CT log. How-
ever, this approach also necessitates the expenditure of a considerable amount of
resources.

The download is conducted using the scanner component of the GitHub repository.
The tool allows for the retrieval of each entry from a CT log, which can then be
processed according to the user’s specifications. However, in order to leverage the
tool’s versatility, it is necessary to create a Go file that will handle the fetched
entries.

The program for downloading the CT log imports a number of standard Go packages
for the handling of HTTP requests, cryptography, file operations, and logging, as well
as packages from Google’s Certificate Transparency Go library for the interaction with
CT logs and the handling of certificates. The scanner is configured with a number of

4.2 Verifying inclusion of certificates 33

concurrent workers, which serve to increase the speed of the scanning process. Addi-
tionally, the option exists to only scan for precertificates. Upon detecting a certificate
within the log, the program extracts the public key of the precertificate and calculates a
SHA-256 hash over the key. Subsequently, the certificate’s entry index is stored in a file
whose name is derived from the public key’s fingerprint.

To ascertain whether a certificate is included in a downloaded CT log, Python code is
employed. The certificate is obtained in PEM encoding. The cryptography and PEM
library is employed to load the certificate and extract the public key. Subsequently,
the hashlib library is utilized to calculate the SHA-256 hash over the extracted public
key.

Finally, the file with the calculated hash is checked for existence. If a file with matching
name is found, it can be concluded that the certificate is included.

In practice, the average time required for the verification of the inclusion of one
certificate is 1.612 milliseconds 4.1.

sctchecker

Additionally, the repository provides access to the sctchecker tool. The tool is capable
of performing basic SCT verification. Upon presentation of a certificate chain, the
tool attempts to ascertain the inclusion of the certificate. The output provides the
number of SCTs within the certificate that were validated, as well as the reason for
any unsuccessful verification attempts.

To facilitate the processing of a large number of certificates, a bash script is employed.
The script reads each line from a given text file. Each line contains a file name,
which represents the name of a certificate where the SCT is to be checked. If the file
exists, a Go command is executed. This command utilizes the sctchecker to verify the
certificate contained in the corresponding file. The progress is outputted on stderr
and provides information about the verification process of every single SCT it checks.
The output must then be processed manually.

In practice, the sctchecker can verify an average of one certificate in 2.01 seconds
4.1.

4.2.2 Own Python Code

Another proposed method for verifying the inclusion of certificates is the development
of a custom code that can verify individual certificates through the API provided by
the CT logs.

We have elected to utilize the Ray library as a parallelizer with the objective of
accelerating the processing of the extensive list of certificates. Additionally, our code

34 4 Implementation

employs a multitude of libraries, including cryptography, pyasn1, pyasn1_modules,
requests, base64, time, json, os, pem, and hashlib, to assist in the processing of the
task. The initial step is to create a class that is specifically designed to handle the
statistics that are gathered during the process of verifying the inclusions. This is
necessary in order to handle the statistics while parallelizing the code. The program
collects data regarding the number of times and reasons for which the inclusion of
certificates could not be verified, as well as the average processing time for a single
certificate.

Although the access to the APIs of the CT logs is publicly available, the log IDs,
which can be observed in SCTs, require further information. Specifically, the objective
is to determine the URL to be accessed when a specific log ID is observed in an
SCT. To that end, a JSON file containing a list of CT logs, maintained by Google,
is retrieved. To enhance the accessibility of the required data during runtime, a
dictionary is employed to map each log ID to its corresponding URL. Some of the
URLs are hard-coded in our code. In such instances, Google hosts a backup of the CT
log in question, and the original log is unresponsive to requests. Subsequently, another
dictionary is initialized and populated with data regarding the STH (Signed Tree
Head) for each log URL. This is achieved through the use of the CT log’s API, which
facilitates the retrieval of the most recent Signed Tree Head (STH). The dictionary is
instrumental in enabling the program to run more swiftly, as the STH is updated
earliest after a period of half an hour.

Subsequently, the parallelizer, Ray, is initialized by launching a local Ray cluster,
which enables the execution of tasks in parallel across multiple cores. Next, an
instance of the class responsible for statistical processing is created. Afterwards, the
directory in which the certificates are stored is specified, indicating the location from
which the files are to be processed. The directory name is then encoded into bytes,
and a list is created that includes every file present in the directory. Subsequently,
counters are initialized to facilitate the monitoring of the number of failed and
successfully verified files throughout the process. Then, a list is initialized, which
serves to store the Ray processes. The responsibility of each process is to verify a
single certificate.

In the initial stage of the verification process, a counter is set up to record the number
of SCTs in a certificate that can be verified. The duration of the process is recorded for
the purpose of statistical analysis and estimation of time requirements. The program
then opens the file in which the certificate is stored. The file is read and parsed
as PEM-encoded data using the pem library. This allows for the differentiation of
multiple certificates within a single file. This is the case when a certificate chain
is stored in a file. Subsequently, the parsed PEM data is converted into a list of
X.509 certificate objects. The certificates are converted into a format that is readily
accessible due to the utilization of the cryptography library. For future reference, a
SHA-256 hash is calculated over the leaf certificate in order to obtain its fingerprint. In
the event that more than one certificate is identified within a given file, it is assumed

4.2 Verifying inclusion of certificates 35

that the second certificate represents the issuer’s certificate. In the event that the file
contains a single certificate, an alternative method must be employed to obtain the
issuer’s certificate.

To exclude certificates without SCTs, a more comprehensive examination of the leaf
certificate is necessary. To this end, the cryptography library is employed to identify
the specific extension containing the SCTs. Typically, these are stored as part of the
certificate’s extensions, specifically under the Precertificate SCT extension. In the
event that no SCTs are identified, the verification process is terminated and the next
certificate is evaluated.

In the event that the issuer certificate is not present within the certificate chain,
the Authority Information Access (AIA) extension from the given certificate is
utilized, as it contains pertinent information regarding the certificate’s issuer. The
aforementioned extension is then examined for the purpose of locating URLs that
allow the download of the issuer’s certificate. In the event that a URL is identified,
a subsequent step is to examine whether a local cache of the issuer certificate is
available. In the event that a cached certificate is identified, it is loaded from the
disk. The absence of a cached certificate prompts the system to attempt a download
from the specified URL, with the objective of subsequently caching the downloaded
certificate locally. The implementation of this caching strategy enables enhanced
time efficiency and the avoidance of being blocked due to an excessive number of
requests.

In the event of an unsuccessful outcome at any stage, an error message is generated
and the verification process is marked as unsuccessful. This is due to the fact that
it is not possible to ascertain the verification status unless the issuer’s certificate is
available.

For each SCT identified within the certificate, the program extracts the log ID,
which serves to identify the CT log that issued the SCT. Additionally, the SCT’s
timestamp, indicating the date and time of submission to the CT log, is extracted.
These two pieces of information are required for the completion of the verification
process.

Subsequently, for each identified SCT, an assessment is conducted to determine if
it originates from a test CT log. These logs are utilized for testing purposes and
lack the necessary infrastructure and functionality to facilitate inclusion verification.
Consequently, these certificates are flagged as successfully verified and the fact that
they are associated with test CT logs is logged.

Afterwards, the program attempts to identify the corresponding CT log URL as-
sociated with the retrieved log ID. In the event that the log ID is not known, the
verification of the specific SCT is documented as unsuccessful. In the event that
the CT log URL is known, the tree size of the log is then retrieved. The tree sizes
are stored in a cache for a maximum of 30 minutes. In the event that the tree size
is outdated, the program initiates an HTTP request to the CT log’s API with the

36 4 Implementation

objective of acquiring the most recent STH. In the event that the tree size could
not be retrieved, the failure is documented and the process continues with the next
SCT.

Subsequently, the precertificate is derived from the actual certificate by removing any
SCT-related extensions. Additionally, the issuer’s certificate is retrieved, its public key
is obtained, and a SHA-256 hash is calculated over it. The final step is to calculate
the leaf hash, which is necessary for the API to identify whether there is an entry in
the CT log that corresponds to the provided certificate. The leaf hash is calculated
over a byte array that includes the timestamp from the SCT, the issuer’s public key
hash, the precertificate, and some constants. With the requisite leaf hash in hand, an
HTTP request is made to the CT log via the get-proof-by-hash endpoint. The request
transmits the hash value and a recent size of the CT log.

If the response from the API is successful (status code 200), it can be confirmed
that the certificate’s SCT is included in the CT log. In the event of a failure, a
second hash is calculated using a timestamp that has been shifted by one hour.
This is done because the cryptography library employs the use of datetime objects
for the interpretation of the SCTs’ timestamps. In some rare cases, the conversion
from a datetime object back to a timestamp in milliseconds does not function as
intended, resulting in a shift of one whole hour. Subsequently, in the event of a second
unsuccessful request, the certificate is deemed to be not included in the specified
log. Following the inclusion check, the result (whether successful or unsuccessful) is
documented.

Subsequently, the code calculates the total time taken for the verification process, with
the objective of providing some statistics about performance after the program has
completed. The final step in the process is the return of a successful flag, which indicates
whether the inclusion of a certificate can be verified.

Ultimately, within a loop, Ray’s wait function awaits the completion of at least one
task and subsequently returns a list comprising both completed tasks and those
that are still in progress. This approach allows for the monitoring of verification
status progress. Upon completion of tasks, their results are retrieved and displayed.
Once all tasks have been completed, final statistics are saved. The time required for
the verification of a single certificate inclusion is measured, as are the number of
verification failures and the reasons for these failures. Additionally, the number of
successful verifications is recorded.

Following the processing and saving of all results, the Ray cluster is shut down to
clean up resources.

In practice, we are able to verify an average of one certificate every 1.04 seconds
4.1.

5 Results

This chapter presents a detailed account of the practical performance of our imple-
mentation, accompanied by a comprehensive statistical analysis of the verification
processes. We differentiate between the certificates/SCTs collected through IP scan-
ning and those obtained through the Tranco list.

5.1 Gathering of certificates

First, we scan the IPv4 address space for hosts that might provide a TLS certificate.
We use ZMap as described in chapter 4. Using this method, we generate a list of
2,934,271 unique IPv4 addresses. These addresses appear to have an open 443 port
and need to be investigated.

Using ZGrab, we try to collect an X.509 certificate from each IPv4 address in the list. Of
the nearly 3 million IP addresses, ZGrab was able to complete a handshake with 898,799
of the hosts and collect digital certificates from them.

Second, using the Tranco list, we have potentially 1 million domains from which to
collect certificates. We use OpenSSL to attempt to store the corresponding certificates
from these sites. Using this method, we are able to download 789,045 certificates from
the list.

Our dataset therefore contains 1687844 certificates in total. In the following, we
verify the certificates from the IPv4 scan separately from those we collected using
the Tranco list.

5.2 Verifying SCTs

Due to technical and temporal constraints, it has not been feasible to verify the
entirety of the collected certificates. Due to temporal constraints, only 711,349 of

38 5 Results

the certificates collected through IPv4 crawling could be processed. The Tranco list
approach permitted the processing of 722,983 certificates.

5.2.1 IPv4

Figure 5.1: Categorization of IP scan certificates in terms of our ability to verify
their SCTs. Out of all collected certificates, 12,717 have no SCT and
therefore no promise of inclusion in CT logs. For 22,234 certificates the
issuer certificates could not be retrieved. We can attempt to verify the
SCTs of the remaining 676,398 certificates.

In Figure 5.1, we present a visual representation of our findings regarding certifi-
cates.

A subset of certificates is deemed irrelevant for the purposes of this research, as
they contain no SCTs and therefore do not constitute a promise of inclusion in
a CT Log. It should be noted that these certificates are not subject to further
processing.

Another portion of the identified certificates can not be validated through the API.
This is due to the fact that the server responsible for providing the issuer’s certificate is
not responding to our queries. In the absence of the issuer’s certificate, it is not possible
to perform the inclusion verification of a precertificate, which is a prerequisite for the
construction of the corresponding Merkle-Tree hash. The inability to reach the server
can be attributed to a number of potential causes. Given the extensive nature of our
scanning activities, it is plausible that the server in question has implemented a block
or limitation on our access. Alternatively, the server may have become unresponsive

5.2 Verifying SCTs 39

to incoming requests. It is not possible to distinguish between these two scenarios
with certainty.

The remaining certificates are processed individually, with consideration given to the
SCTs they provide.

Figure 5.2: Categorization of SCTs from verifiable certificates (logarithmic scale). In
total, we were able to process 1,749,820 SCTs from different certificates.
20 of these SCTs do not have a valid signature, 124 SCTs are from test
CT logs, 224 SCTs contain log IDs that we do not recognize, and 95,875
SCTs are signed by logs that are no longer responding. The remaining
1,653,577 SCTs can be successfully verified by us.

The verification of individual SCTs enabled the identification of special properties
associated with some of them. It is evident that there are SCTs that can be successfully
verified. In contrast, we have identified a subset of SCTs for which we are unable
to confirm the inclusion of their associated certificates in the CT log. There are
a number of reasons why a SCT may not be able to be verified in a satisfactory
manner.

Firstly, it is possible that a certificate has been included in a test CT log. The
functionality of these logs is limited to the party that provides them with a certificate.
Such a system provides a promise of inclusion for the given certificate but is unable to
demonstrate proof of inclusion, as it was not designed with this specific task in mind.

40 5 Results

It can be reasonably assumed that certificates containing such SCTs from Test-CT
logs are also certificates issued for testing purposes.

Secondly, there are what we refer to as "fake SCTs." It is unclear for what purposes
these certificates are utilized. The SCTs in question bear a signature that is defective
and therefore cannot be validated. To be more precise, the signature in question
cannot be verified using the public key of the CT log that is purported to have issued
the SCT.

Thirdly, there are SCTs for which the corresponding CT log is not identifiable, as it
is not included in the list of all known and announced logs, which is maintained by
Google. For purposes of comparison and reference, the gstatic-list is utilized by us for
all log IDs. Verification of these SCTs is not attainable, as the path of the API and
the public key of the CT log associated with the specified log ID remain unidentified
[all].

Ultimately, verification of the inclusion promise is not possible if the CT log that
provided the promise is no longer accessible. Some SCTs were issued by CT logs that
are no longer online, which prevents verification of the SCTs from these non-responsive
logs. The distribution of properties of the corresponding SCTs on a logarithmic scale
is shown in Figure 5.2, which presents the SCTs gathered while scanning the IPv4
space.

For the certificates collected while scanning the IPv4 space, Figure 5.2 shows the distri-
bution of the properties of the corresponding SCTs on a logarithmic scale.

The presented statistics offer no evidence of any irregularities or misbehavior in the
CT logs.

5.2.2 Tranco’s one million

In Figure 5.3, we present a breakdown of the distribution of relevant and non-relevant
certificates that we intend to investigate further. The data is presented in a format
analogous to that used for the IP scan.

For the certificates that are relevant to our investigation, we extract the SCTs and
subject them to further processing.

The distribution of different SCTs and their corresponding properties is provided in Fig-
ure 5.4. The structure is analogous to that employed for the IP scan.

5.3 Downloading a CT Log 41

Figure 5.3: Categorization of certificates from the Tranco list in terms of our ability
to verify their SCTs. Of all the certificates collected, 10,149 have no SCT
and therefore no promise of inclusion in CT logs. For 56 certificates, the
issuer certificates could not be retrieved. We can attempt to verify the
SCTs of the remaining 712,778 certificates.

5.3 Downloading a CT Log

Although the process of verifying an SCT using a local CT log is the most temporally
efficient, as evidenced by the data presented in Figure 4.1, it is not without its
drawbacks. That is the process of downloading the entirety of a CT log. In order to
conduct our research, we downloaded the Nessie2025 log provided by DigiCert. At
the beginning of the process, the log comprised approximately 147 million individual
entries. By the conclusion of the process, the number of entries had increased to
approximately 189 million. It should be noted that not every single certificate was
downloaded; only the precertificates were obtained. This is due to the fact that,
while it is required of CAs to provide at least the precertificate, they are not obliged
to include the certificate which has the SCT as an extension in the CT log. The
precertificates alone comprise approximately 72% of the CT log. The download of
the approximately 136 million precertificates took 30 days in total and occupies 46
gigabytes of space. It can be seen that this method is therefore limited in its usage.
While there are many scenarios in which downloading is beneficial, it should be noted
that a lengthy download must be completed beforehand.

42 5 Results

Figure 5.4: Categorization of SCTs from verifiable certificates (logarithmic scale). In
total, we were able to process 1,624,640 SCTs from different certificates. 5
of these SCTs are from test CT logs, 44 SCTs do not have a valid signature,
138 SCTs contain log IDs that we do not recognize, and 57968 SCTs are
signed by logs that are no longer responding. The remaining 1,566,485
SCTs can be successfully verified by us.

6 Discussion

In the course of our research, we encountered issues that we believe are worthy of
further attention, as they may also affect those who are interested in pursuing this
topic in greater depth. In the following section, we will provide a brief overview of
some of the more notable issues.

6.1 Rate limiting and blacklisting

The issue of rate limiting and blacklisting is a common occurrence in the context
of large-scale network traffic. Although this is an effective method for maintaining
server stability, it does result in more time-consuming and resource-intensive auditing
of critical web ecosystem components. It is also noteworthy that different providers
of CT logs have implemented limits that vary in their specifications. For instance,
while DigiCert and Cloudflare impose a limit of 1,024 entries per request for users
accessing their CT logs, Google restricts the number of entries in each batch to 32.
This has a significant impact on the rate at which an auditor is able to download
a CT log. Fortunately, this limit did not present a significant challenge during the
verification process of the SCTs, as the preparation of the issuer’s certificate and the
leaf hash required so much time in fact that we did not have to worry about rate
limiting.

A more significant challenge was encountered with regard to blacklisting, as this phe-
nomenon was observed in the context of multiple servers, specifically those responsible
for distributing issuer and intermediate certificates. As previously stated in chapter 2,
in order to obtain the leaf hash, it is necessary to possess the certificate issued by the
relevant issuer. Blacklisting by these provisioning servers results in the inability to test
SCTs of the corresponding certificate. We attempted to mitigate this by consistently
saving intermediate certificates, which did reduce the frequency of occurrences but did
not entirely prevent them. This significantly impacted our ability to verify a substantial
number of certificates. Unfortunately, it is not immediately evident whether the server
is no longer responsive or if we have been blacklisted.

44 6 Discussion

6.2 Timely inclusion

Another point that we initially intended to investigate is the timing of inclusion in a
CT log. Specifically, the time interval between the issuance of the certificate to the
CT log provider and its actual incorporation into the log. Although the monitors are
already tasked with ensuring that the MMD has been met, it would also be beneficial
to investigate the amount of time that elapses between the acquisition of a promise
for inclusion and the actual inclusion. It is unfortunately not possible to calculate
the exact time stamp for older certificates without the information being saved by a
monitor.

6.3 Independent code for using API

Despite the relevance of Certificate Transparency, there is a relatively limited repository
of code utilizing the API of the logs. It is challenging to identify even basic examples
of how to utilize the API of the CT logs. Moreover, there is a limited awareness of
this particular aspect of the web. It is regrettable that there is a lack of available
libraries. The use of multiple sources for source code can enhance the reliability and
integrity of the codebase through cross-validation. Furthermore, a diversity of sources
can also lead to different approaches and innovations, which in turn encourages the
development of features, optimizations, and enhancements. Currently, the Google
source code represents the primary available option. However, this may entail certain
risks associated with centralized control.

6.4 Mirrors of CT logs

The research would have been concluded with a greater number of SCTs, for which
the corresponding CT logs are no longer accessible online. However, for some of
these CT logs that are already offline and do not provide any inclusion verification,
there exist mirrors provided by Google. The act of mirroring offline CT logs offers
certain advantages with regard to the continuity of the CT ecosystem. Primarily,
even in the event that the original log is no longer accessible, the verification process
can still be conducted. This enhances the reliability of the certificates that, in the
absence of this measure, would fail to meet the technical requirements of browsers. It
is encouraging to observe that Google is maintaining the logs for the benefit of end
users.

7 Conclusion

This thesis examines the reliability and compliance of Signed Certificate Timestamps
(SCTs) within the broader framework of certificate transparency. It explores the extent
to which SCTs provide a trustworthy foundation for security within the modern web
ecosystem. In the preceding chapters, we have presented our methodology, data,
statistical analysis, and findings. This leads to the conclusion that no evidence was
found to suggest that any SCTs failed its promise towards the user. Verification
of the SCTs revealed that each one was indeed backed by an actual entry in the
corresponding CT log.

It should be noted that not all SCTs could be fully verified for compliance. However,
this is attributed to external factors, such as inaccessible services and servers. However,
the absence of evidence for misbehavior does not constitute proof of absolute trustwor-
thiness. The thesis demonstrated that a significant number of SCTs do comply and
that there is no reason to doubt their individual promises.

It is imperative to exercise a critical eye towards this mechanism, given its sig-
nificant influence within the modern web ecosystem. However, in light of these
findings, it is reasonable for users to adopt a degree of confidence in these mecha-
nisms.

The research presented here is limited in temporal scope. Further research may
encompass larger and more diverse datasets, incorporating sources that may reveal a
fundamentally different class of certificates. A further avenue for future research could
be to enhance the verification process, thereby increasing its speed and reliability. This
could be achieved by refining the proposed code to address potential flaws and technical
issues. As an alternative, the code provided by Google’s library could be edited to
align it more closely with the researcher’s objectives.

A Appendix

1 sudo zmap -p 443 -o results.csv

Listing A.1: ZMap crawling ports 443

1 sudo zgrab2 tls --port 443 --input -file results.csv --output -file
↪→ certificates.json

Listing A.2: ZGrab saving X.509 certificates

1 import json
2 def prepare_certificates_json(cert_path):
3 with open(cert_path , ’rb’) as cert_file:
4 curr = 0
5 for line in cert_file:
6 curr += 1
7 entry = json.loads(line.strip ())
8 if curr %5000 == 0:
9 print(f"{curr} Lines geparsed.")

10 if entry["data"]["tls"]["status"] == ’success ’:
11 try:
12 with open(f"certificates /{entry[’data ’][’tls ’][’

↪→ result ’][’handshake_log ’][’ server_certificates ’][’certificate
↪→ ’][’parsed ’][’ fingerprint_sha256 ’]}.txt", "w") as f:

13 f.write(f"-----BEGIN CERTIFICATE -----\n{entry
↪→ [’data ’][’tls ’][’result ’][’ handshake_log ’][’ server_certificates
↪→ ’][’certificate ’][’raw ’]}\n-----END CERTIFICATE -----")

14 except KeyError:
15 continue
16

17 prepare_certificates_json("certificates.json")

Listing A.3: Pre-process certificates crawled with ZGrab

1 shuf ../ domains.txt | tr -d ’\r’ | parallel --eta -j 16 "timeout 5s
↪→ openssl s_client -connect {}:443 -showcerts -servername {} 2>/
↪→ dev/null </dev/null | sed -ne ’/-BEGIN CERTIFICATE -/,/-END
↪→ CERTIFICATE -/p’ > {}. pem"

Listing A.4: Download certificates from Tranco list

48 A Appendix

1 package main
2

3 import (
4 "context"
5 "crypto/sha256"
6 "crypto/x509"
7 "encoding/hex"
8 "fmt"
9 "io/ioutil"

10 "log"
11 "os"
12 "path/filepath"
13 ct "github.com/google/certificate -transparency -go"
14 "github.com/google/certificate -transparency -go/client"
15 "github.com/google/certificate -transparency -go/scanner"
16 "github.com/google/certificate -transparency -go/jsonclient"
17 "net/http"
18)
19

20 func calculateFingerprint(certDER []byte) string {
21 hash := sha256.Sum256(certDER)
22 return hex.EncodeToString(hash [:])
23 }
24

25 func saveEntryNumber(fingerprint string , directory string , index int64
↪→) error {

26 filename := filepath.Join(directory , fmt.Sprintf ("%s.txt",
↪→ fingerprint))

27 content := fmt.Sprintf ("Entry number: %d", index)
28 return ioutil.WriteFile(filename , []byte(content), 0644)
29 }
30

31 func main() {
32 saveDirectory := "/mnt/measures/Nessie2025/content"
33 os.MkdirAll(saveDirectory , os.ModePerm)
34

35 logURL := "https :// nessie2025.ct.digicert.com/log/"
36 httpClient := &http.Client {}
37 logClient , err := client.New(logURL , httpClient , jsonclient.

↪→ Options {})
38 if err != nil {
39 log.Fatalf (" Failed to create log client: %v", err)
40 }
41

42 opts := scanner.DefaultScannerOptions ()
43 opts.Matcher = &scanner.MatchAll {}
44 opts.PrecertOnly = true
45 //opts.NumWorkers = 30 // Increase the number of concurrent

↪→ workers
46

47 logScanner := scanner.NewScanner(logClient , *opts)
48

49 foundCert := func(entry *ct.RawLogEntry) {
50 logEntry , err := entry.ToLogEntry ()

49

51 if err != nil {
52 log.Printf (" Failed to parse log entry at index %d: %v",

↪→ entry.Index , err)
53 return
54 }
55

56 if logEntry.X509Cert != nil {
57 fingerprint := calculateFingerprint(logEntry.X509Cert.Raw)
58 err := saveEntryNumber(fingerprint , saveDirectory , entry.

↪→ Index)
59 if err != nil {
60 log.Printf (" Failed to save entry number for

↪→ certificate at index %d: %v", entry.Index , err)
61 } else {
62 fmt.Printf ("Saved certificate entry number at index %d

↪→ with fingerprint %s\n", entry.Index , fingerprint)
63 }
64 }
65 }
66

67 foundPrecert := func(entry *ct.RawLogEntry) {
68 logEntry , err := entry.ToLogEntry ()
69 if err != nil {
70 log.Printf (" Failed to parse log entry at index %d: %v",

↪→ entry.Index , err)
71 return
72 }
73

74 if logEntry.Precert != nil {
75 tbsCertDER , err := x509.MarshalPKIXPublicKey(logEntry.

↪→ Precert.TBSCertificate.PublicKey)
76 if err != nil {
77 log.Printf (" Failed to marshal TBS certificate at index

↪→ %d: %v", entry.Index , err)
78 return
79 }
80 fingerprint := calculateFingerprint(tbsCertDER)
81 err = saveEntryNumber(fingerprint , saveDirectory , entry.

↪→ Index)
82 if err != nil {
83 log.Printf (" Failed to save entry number for

↪→ precertificate at index %d: %v", entry.Index , err)
84 } else {
85 fmt.Printf ("Saved precertificate entry number at index

↪→ %d with fingerprint %s\n", entry.Index , fingerprint)
86 }
87 }
88 }
89

90 err = logScanner.Scan(context.Background (), foundCert ,
↪→ foundPrecert)

91 if err != nil {
92 log.Fatalf ("Error during scanning: %v", err)
93 }

50 A Appendix

94 }

Listing A.5: Go code for scanning and saving certificates from Nessie2025

1 from cryptography import x509
2 from cryptography.hazmat.backends import default_backend
3 import base64
4 from cryptography.hazmat.primitives.serialization import Encoding ,

↪→ PublicFormat
5 from cryptography.x509.oid import ExtensionOID
6 import hashlib
7 import time
8 import os
9

10 def load_certificate(cert_data):
11 cert = x509.load_der_x509_certificate(base64.b64decode(cert_data),

↪→ default_backend ())
12 return cert
13

14 def extract_scts_from_certificate(cert_pem):
15 try:
16 scts = cert_pem.extensions.get_extension_for_oid(ExtensionOID.

↪→ PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS).value
17 sct_list = []
18 for sct in scts:
19 sct_list.append(base64.b64encode(sct.log_id).decode(’ascii

↪→ ’))
20 return sct_list
21 except:
22 return None
23

24 def public_key_hash(cert_pem):
25 return hashlib.sha256(cert_pem.public_key ().public_bytes(Encoding.

↪→ DER , PublicFormat.SubjectPublicKeyInfo)).digest ().hex()
26

27 def current_milli_time ():
28 return round(time.time() * 1000)
29

30

31 def inclusion_proof(cert_path):
32 start = current_milli_time ()
33

34 with open(cert_path , "rb") as f:
35 data = pem.parse(f.read())
36 certificates = [x509.load_pem_x509_certificate(single.as_bytes

↪→ (), default_backend ()) for single in data]
37

38 cert = certificates [0]
39

40 fingerprint = public_key_hash(cert)
41

42 scts = extract_scts_from_certificate(cert)
43 if scts == None:
44 end = current_milli_time ()

51

45 return False , end - start
46

47 successful = True
48 for log_id in scts:
49

50 if log_id == "TnWjJ1yaEMM4W2zU3z9S6x3w4I4bjWnAsfpksWKaOd8=":
51 if not os.path.isfile(f"/mnt/measures/Argon2025h1/content

↪→ /{ fingerprint }.txt"):
52 successful = False
53 continue
54

55 elif log_id == "5tIxY0B3jMEQQQbXcbnOwdJA9paEhvu6hzId/R43jlA=":
56 if not os.path.isfile(f"/mnt/measures/Nessie2025/content /{

↪→ fingerprint }.txt"):
57 successful = False
58 continue
59

60 elif log_id == "fVkeEuF4KnscYWd8Xv340IdcFKBOlZ65Ay/ZDowuebg=":
61 if not os.path.isfile(f"/mnt/measures/Yeti2025/content /{

↪→ fingerprint }.txt"):
62 successful = False
63 continue
64

65 with open("Logs/log.txt", "a") as f:
66 if successful:
67 f.write(f"{fingerprint} wurde erfolgreich bei allen

↪→ angegebenen CT Logs verifiziert .\n")
68 else:
69 f.write(f"Bei der Verifizeriung von {fingerprint} ist ein

↪→ Fehler aufgetreten .\n")
70

71 end = current_milli_time () - start
72 return end
73

74

75 if __name__ == "__main__":
76

77 dir_name = "/home/luis/ip_scan/Remaining"
78 directory = os.fsencode(dir_name)
79

80 dir_content = os.listdir(directory)
81

82 size = len(dir_content)
83 counter = 0
84

85 timer = 0
86

87 for file in dir_content:
88 counter += 1
89 filename = os.fsdecode(file)
90

91 start = current_milli_time ()
92

93 end = inclusion_proof(f"{dir_name }/{ filename}")

52 A Appendix

94

95 timer += end
96 if counter % 10000 == 0:
97 with open("Logs/average.txt", "w") as f:
98 f.write(f"Averagely {timer/counter} ms for

↪→ verification of one certificate.")

Listing A.6: Verifying inclusion in local CT log

1 #!/bin/bash
2 count=0
3 # Path to the directory in which the PEM files are located
4 pem_dir="/home/luis/top1m/certificates"
5

6 # Text file with the PEM files
7 filelist="/home/luis/top1m/fails/file.txt"
8

9 # Check whether the text file exists
10 if [! -f "$filelist"]; then
11 echo "File $filelist not found!"
12 exit 1
13 fi
14

15 # Run through each line of the text file
16 while IFS= read -r filename; do
17 # Full path specification for the PEM file
18 full_path="$pem_dir/$filename"
19

20 count=$((count + 1))
21

22 # Check whether the file exists
23 if [-f "$full_path"]; then
24 # Execute the go command
25 go run sctcheck.go "$full_path"
26

27 done < "$filelist"

Listing A.7: sctchecker for failed certificates

1 from cryptography import x509
2 from pyasn1.codec.der.decoder import decode as asn1_decode
3 from pyasn1.codec.der.encoder import encode as asn1_encode
4 from pyasn1_modules import rfc5280
5 from cryptography.hazmat.backends import default_backend
6 import requests
7 from cryptography.hazmat.primitives import serialization
8 import datetime
9 import base64

10 from cryptography.hazmat.primitives.serialization import Encoding ,
↪→ PublicFormat

11 from cryptography.x509.oid import ExtensionOID
12 from cryptography.hazmat.primitives import hashes
13 import hashlib
14 import time

53

15 import json
16 import os
17 import ray
18 import pem
19

20

21 @ray.remote
22 class GlobalState:
23 def __init__(self):
24 self.total_time_spent = 0
25 self.number_samples = 0
26 self.failing_reasons = {’1’: {’count’:0, ’desc’:"Issuer konnte

↪→ nicht ermittelt/heruntergeladen werden", ’ids’:[]},
27 ’2’: {’count’:0, ’desc’:"Zertifikat

↪→ besitzt keine Precertificate -SCTs"},
28 ’3’: {’count’:0, ’desc’:"Eine LogID

↪→ ist nicht bekannt", ’ids’:[]},
29 ’4’: {’count’:0, ’desc’:"Ein Log

↪→ konnte nicht erreicht werden", ’ids’:[]},
30 ’5’: {’count’:0, ’desc’:"Zertifikat

↪→ ist nicht inkludiert", ’ids’:[]},
31 ’6’: {’count’:0, ’desc’:"Zertifikat

↪→ nutzt Test -Log(s). Wird immer als in Ordnung angesehen.", ’ids’
↪→ :[]}

32 }
33

34 def update_time_and_samples(self , time_spent):
35 self.total_time_spent += time_spent
36 self.number_samples += 1
37

38 def update_failing_reasons(self , reason_key , log_id=None):
39 self.failing_reasons[reason_key][’count’] += 1
40 if log_id:
41 if(log_id not in self.failing_reasons[reason_key][’ids’]):
42 self.failing_reasons[reason_key][’ids’]. append(log_id)
43

44 def get_state(self):
45 return self.total_time_spent , self.number_samples , self.

↪→ failing_reasons
46

47

48

49 def convert2precert(cert_pem):
50 certasn1 = asn1_decode(cert_pem.tbs_certificate_bytes , asn1Spec=

↪→ rfc5280.TBSCertificate ())[0]
51

52 newExts = [ext for ext in certasn1["extensions"] if str(ext["
↪→ extnID"]) not in ("1.3.6.1.4.1.11129.2.4.2", "
↪→ 1.3.6.1.4.1.11129.2.4.3")]

53 certasn1["extensions"].clear()
54 certasn1["extensions"]. extend(newExts)
55 return asn1_encode(certasn1)
56

57 def get_issuer_certificate(aia_extension):

54 A Appendix

58 try:
59 urls = []
60 for access_description in aia_extension.value:
61 if access_description.access_method == x509.

↪→ AuthorityInformationAccessOID.CA_ISSUERS:
62 urls.append(access_description.access_location.

↪→ value)
63

64 except x509.ExtensionNotFound:
65 return
66

67 if len(urls) != 1 : return None
68

69 url_hash = hashlib.sha1(urls [0]. encode ()).digest ().hex()
70 cert_path = f"./ issuer_certs /{ url_hash }.txt"
71 if os.path.isfile(cert_path):
72 with open(cert_path , "rb") as f:
73 issuer_cert = f.read()
74 try:
75 issuer_cert_obj = x509.load_der_x509_certificate(bytes.

↪→ fromhex(str(issuer_cert)[2: -1]), default_backend ())
76 issuer_cert_pem = issuer_cert_obj.public_bytes(encoding=

↪→ serialization.Encoding.PEM).decode ()
77

78 return x509.load_pem_x509_certificate(issuer_cert_pem.
↪→ encode (), default_backend ())

79 except:
80 pass
81

82 try:
83 response = requests.get(urls [0])
84 issuer_cert = response.content
85 with open(cert_path , "w") as f:
86 f.write(issuer_cert.hex())
87 issuer_cert_obj = x509.load_der_x509_certificate(issuer_cert ,

↪→ default_backend ())
88 issuer_cert_pem = issuer_cert_obj.public_bytes(encoding=

↪→ serialization.Encoding.PEM).decode ()
89

90 return x509.load_pem_x509_certificate(issuer_cert_pem.encode ()
↪→ , default_backend ())

91 except Exception as e:
92 print(e)
93 return
94

95 def extract_scts_from_certificate(cert_pem):
96 try:
97 scts = cert_pem.extensions.get_extension_for_oid(ExtensionOID.

↪→ PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS).value
98 sct_list = []
99 for sct in scts:

100 sct_entry = {
101 ’log_id ’: base64.b64encode(sct.log_id).decode(’ascii’)

↪→ ,

55

102 ’timestamp ’: sct.timestamp
103 }
104 sct_list.append(sct_entry)
105 return sct_list
106 except:
107 return None
108

109 def public_key_hash(cert_pem):
110 return hashlib.sha256(cert_pem.public_key ().public_bytes(Encoding.

↪→ DER , PublicFormat.SubjectPublicKeyInfo)).digest ()
111

112

113 def hash_leaf_precert(timestamp , issuer_key , cert):
114 hash_data = bytearray ()
115 hash_data.append (0)
116 hash_data.append (0)
117 hash_data.append (0)
118 hash_data.extend(timestamp.to_bytes(8, ’big’))
119 hash_data.extend ((1).to_bytes(2,’big’))
120 hash_data.extend(issuer_key)
121 hash_data.extend(len(cert).to_bytes(3,’big’))
122 hash_data.extend(cert)
123 hash_data.extend ((0).to_bytes(2,’big’)) #extensions
124

125 return hashlib.sha256(hash_data).digest ()
126

127 def find_log_url(log_id):
128 try:
129 return log_dict[log_id]
130 except Exception as e:
131 print(e)
132 return None
133

134 def initialize_tree_size(log_url , timeout = None):
135 global tree_heads
136 try:
137 sth = get_log_info(log_url , timeout)
138 except:
139 sth = None
140 if sth == None:
141 return None
142 tree_heads[log_url][’timestamp ’] = sth[’timestamp ’]
143 tree_heads[log_url][’tree_size ’] = sth[’tree_size ’]
144 return tree_heads[log_url][’tree_size ’]
145

146 def get_tree_size(log_url , timeout = None):
147 global tree_heads
148 ts = tree_heads[log_url][’timestamp ’]
149 if ts == None: return None
150 if ((current_milli_time () - ts) < 30*60000):
151 try:
152 sth = get_log_info(log_url , timeout)
153 except:
154 sth = None

56 A Appendix

155 if sth == None:
156 return None
157 tree_heads[log_url][’timestamp ’] = sth[’timestamp ’]
158 tree_heads[log_url][’tree_size ’] = sth[’tree_size ’]
159 return tree_heads[log_url][’tree_size ’]
160

161 def get_log_info(log_url , timeout):
162 response = requests.get(f"{log_url }/ct/v1/get -sth", timeout =(

↪→ timeout , None))
163 if response.status_code != 200:
164 return None
165 return response.json()
166

167 def in_test_log(log_id):
168 if log_id in ["w78Dp+HKiEHGB7rj /0Jw/KXsRbGG675OLPP8d4Yw9fY=",
169 "UutLIl7IlpdIUGdfI+Q7wdAh4yFM5S7NX6h8IDzfygM=",
170 "C3YOmouaaC+ImFsV6UdQGlZEa7qIMHhcOEKZQ4ZFDAA=",
171 "H8cs5aG3mfQAw1m /+ WyjkTVI6GRCIGEJUum6F3T3usc=",
172 "o8mYRegKt84AFXs3Qt8CB90nKytgLs+Y7iwS25xa5+c=",
173 "aXqvyhprU2+uISBQRt661+Dq6hPSQy5unY+zefK5qvM=",
174 "+X6XuNM +96 FZAqU6GeF5kOXcQGoDGCW6rZPpj5ucacs=",
175 "sMyD5aX5fWuvfAnMKEkEhyrH6IsTLGNQt8b9JuFsbHc=",
176 "YukAYASjB5VadUS01YSpYmjKHW5Fha3wkW3+X9wfBNs=",
177 "MCTOfusWiGJyS+pwLv/5ks/kVkNBkapZWyX4AibIABc=",
178 "P+HLRu1HNXmvAUH5ck2dxENHLXVuhedxnFWCSF3U4eQ=",
179 "JgI5SIdM9/zQ+2 RxpD6EfrsgCubi+iQjbfbRpgZjD7E=",
180 "yEuQege+qimmFMJFhLej9mJDlGh7Jf5ig4tx7EIq0vk="]:
181 return True
182 return False
183

184 def current_milli_time ():
185 return round(time.time() * 1000)
186

187

188 @ray.remote
189 def inclusion_proof(cert_path , global_state):
190 start = current_milli_time ()
191

192 with open(cert_path , "rb") as f:
193 data = pem.parse(f.read())
194 certificates = [x509.load_pem_x509_certificate(single.as_bytes

↪→ (), default_backend ()) for single in data]
195 if len(certificates) == 0:
196 with open("/mnt/measures/log_verify/log.txt", "a") as f:
197 f.write(f"Die Datei unter {cert_path} enthaelt keine

↪→ Zertifikate .\n")
198 return False
199

200 cert = certificates [0]
201 issuer = None
202 if len(certificates) > 1:
203 issuer = certificates [1]
204

205 cert

57

206 fingerprint = cert.fingerprint(hashes.SHA256 ()).hex()
207

208 scts = extract_scts_from_certificate(cert)
209 if scts == None:
210 ray.get(global_state.update_failing_reasons.remote(’2’))
211

212 with open("/mnt/measures/log_verify/log.txt", "a") as f:
213 f.write(f"Es sind keine SCTs in {fingerprint }.\n")
214 return False
215

216 if issuer == None:
217 try:
218 issuer = get_issuer_certificate(cert.extensions.

↪→ get_extension_for_class(x509.AuthorityInformationAccess))
219 except:
220 pass
221 if issuer == None:
222 ray.get(global_state.update_failing_reasons.remote(’1’,

↪→ fingerprint))
223

224 with open("/mnt/measures/log_verify/log.txt", "a") as f:
225 f.write(f"Issuer fuer {fingerprint} konnte nicht ermittelt

↪→ /heruntergeladen werden .\n")
226 return False
227

228 successful = True
229 for sct in scts:
230

231 try:
232 if in_test_log(sct.get("log_id")):
233 ray.get(global_state.update_failing_reasons.remote(’6’

↪→ , fingerprint))
234 with open("/mnt/measures/log_verify/log.txt", "a") as

↪→ f:
235 f.write(f"{fingerprint} benutzt Test -CT Log(s).\n"

↪→)
236 return True
237 ct_log_url = find_log_url(sct.get("log_id"))
238 if ct_log_url == None:
239 ray.get(global_state.update_failing_reasons.remote(’3’

↪→ , sct.get("log_id")))
240

241 with open("/mnt/measures/log_verify/log.txt", "a") as
↪→ f:

242 f.write(f"Die LogID {sct.get(’log_id ’)} von {
↪→ fingerprint} ist nicht bekannt .\n")

243 successful = False
244 continue
245 if ct_log_url [-1] == "/":
246 ct_log_url = ct_log_url [:-1]
247 tree_size = get_tree_size(ct_log_url)
248

249 if tree_size == None:
250 ray.get(global_state.update_failing_reasons.remote(’4’

58 A Appendix

↪→ , sct.get(’log_id ’)))
251

252 with open("/mnt/measures/log_verify/log.txt", "a") as
↪→ f:

253 f.write(f"Fuer {fingerprint} konnte Log {sct.get(’
↪→ log_id ’)} nicht erreichen .\n")

254 successful = False
255 continue
256

257 hash = hash_leaf_precert(int(sct.get("timestamp").
↪→ timestamp () *1000) , public_key_hash(issuer), convert2precert(
↪→ cert))

258 params = {"hash": base64.b64encode(hash), "tree_size" :
↪→ tree_size}

259 response = requests.get(f"{ct_log_url }/ct/v1/get -proof -by-
↪→ hash", params=params)

260 if response.status_code != 200:
261 hash = hash_leaf_precert(int(sct.get("timestamp").

↪→ timestamp () *1000+3600000) , public_key_hash(issuer),
↪→ convert2precert(cert))

262 params = {"hash": base64.b64encode(hash), "tree_size"
↪→ : tree_size}

263 response = requests.get(f"{ct_log_url }/ct/v1/get -proof
↪→ -by -hash", params=params)

264

265 if response.status_code != 200:
266 ray.get(global_state.update_failing_reasons.remote

↪→ (’5’, fingerprint))
267

268

269 with open("/mnt/measures/log_verify/log.txt", "a")
↪→ as f:

270 f.write(f"{fingerprint} ist bei {sct.get(’
↪→ log_id ’)} nicht inkludiert .\n")

271 successful = False
272 except Exception as e:
273 ray.get(global_state.update_failing_reasons.remote(’4’,

↪→ sct.get(’log_id ’)))
274 with open("/mnt/measures/log_verify/log.txt", "a") as f:
275 f.write(f"Waehrend der Verifizierung von {fingerprint}

↪→ ist folgender Fehler aufgetreten: {e}.\n")
276 successful = False
277

278 with open("/mnt/measures/log_verify/log.txt", "a") as f:
279 if successful:
280 f.write(f"{fingerprint} wurde erfolgreich bei allen

↪→ angegebenen CT Logs verifiziert .\n")
281 else:
282 f.write(f"Bei der Verifizeriung von {fingerprint} ist ein

↪→ Fehler aufgetreten .\n")
283

284 end = current_milli_time ()
285 ray.get(global_state.update_time_and_samples.remote(end -start))
286

59

287 return successful
288

289 def save_results(global_state , counter , size , fail , verified):
290 (total_time_spent , number_samples , failing_reasons) = ray.get(

↪→ global_state.get_state.remote ())
291

292 with open("./ stats/failing_reasons.txt", ’w’) as f:
293 json.dump(failing_reasons , f, indent =4)
294

295 if(number_samples != 0):
296 with open("./ stats/average_time.txt", ’w’) as f:
297 f.write(f"Durchschnittlich werden {total_time_spent/

↪→ number_samples} Millisekunden gebraucht , um ein Zertifikat zu
↪→ ueberpruefen .\ nInsgesamte Zeit verbracht mit Verifizieren {
↪→ total_time_spent };\ nAnzahl Zertifikate , die in dieser Zeit
↪→ ueberprueft wurden: {number_samples }\n")

298

299 with open("./Logs/verified.txt", ’w’) as f:
300 f.write(f"{counter} von {size} geprueft. Davon {fail} failed

↪→ und {verified} verifiziert\n")
301

302 print(f"Saved results at {counter} certificates processed.")
303

304

305

306

307 if __name__ == "__main__":
308

309 log_urls = "https ://www.gstatic.com/ct/log_list/v3/all_logs_list.
↪→ json"

310 response = requests.get(log_urls)
311

312 if response.status_code == 200:
313 json_data = json.loads(response.text)
314 else:
315 print("all_logs_list konnte nicht geladen werden")
316

317 with open("ct_logs.json", ’rb’) as json_file:
318 json_data = json.load(json_file)
319

320 log_dict = {}
321

322 for operator in json_data.get(’operators ’, []):
323 for log in operator.get(’logs’, []):
324 log_id = log.get(’log_id ’)
325 url = log.get(’url’)
326 if log_id and url:
327 log_dict[log_id] = url
328 log_dict["tz77JN+cTbp18jnFulj0bF38Qs96nzXEnh0JgSXttJk="] = "https

↪→ ://ct.googleapis.com/logs/eu1/mirrors/letsencrypt_oak2023/"
329 log_dict["36 Veq2iCTx9sre64X04+WurNohKkal6OOxLAIERcKnM="] = "https

↪→ ://ct.googleapis.com/logs/eu1/mirrors/letsencrypt_oak2022/"
330 log_dict["BZwB0yDgB4QTlYBJjRF8kDJmr69yULWvO0akPhGEDUo="] = "https

↪→ ://ct.googleapis.com/logs/eu1/mirrors/digicert_yeti2022_2/"

60 A Appendix

331 log_dict["QcjKsd8iRkoQxqE6CUKHXk4xixsD6+tLx2jwkGKWBvY="] = "https
↪→ ://ct.googleapis.com/logs/us1/mirrors/cloudflare_nimbus2022/"

332 log_dict["ejKMVNi3LbYg6jjgUh7phBZwMhOFTTvSK8E6V6NS61I="] = "https
↪→ ://ct.googleapis.com/logs/us1/mirrors/cloudflare_nimbus2023/"

333 log_dict["b1N2rDHwMRnYmQCkURX/dxUcEdkCwQApBo2yCJo32RM="] = "https
↪→ ://ct.googleapis.com/logs/us1/mirrors/comodo_mammoth/"

334 log_dict["VYHUwhaQNgFK6gubVzxT8MDkOHhwJQgXL6OqHQcT0ww="] = "https
↪→ ://ct.googleapis.com/logs/us1/mirrors/comodo_sabre/"

335

336 tree_heads = {}
337 for id in log_dict:
338 url = log_dict[id]
339 if url[-1] == "/":
340 url = url[:-1]
341 tree_heads[url] = {’timestamp ’: None , ’tree_size ’: None}
342 i = 0
343 for item in tree_heads:
344 i += 1
345 initialize_tree_size(item , None)
346 print(f"{i} von {len(tree_heads)} STHs gespeichert", end="\r")
347

348

349

350 ray.init()
351 global_state = GlobalState.remote ()
352

353 dir_name = "/home/talha/pems"
354 directory = os.fsencode(dir_name)
355

356 dir_content = os.listdir(directory)
357

358 size = len(dir_content)
359 fail = 0
360 verified = 0
361 counter = 0
362 futures = []
363

364 for file in dir_content:
365 counter += 1
366 filename = os.fsdecode(file)
367

368 futures.append(inclusion_proof.remote(f"{dir_name }/{ filename}"
↪→ , global_state))

369

370

371 processed_counter = 0
372 remaining = futures
373 while remaining:
374 done , remaining = ray.wait(remaining , num_returns =1)
375 processed_counter += len(done)
376

377 # Collect results from completed tasks
378 results = ray.get(done)
379 for result in results:

61

380 if result:
381 verified += 1
382 else: fail += 1
383 print(f"{processed_counter} von {size} geprueft. Davon {

↪→ fail} failed und {verified} verifiziert")
384

385 # Save final results
386 save_results(global_state , processed_counter , size , fail , verified

↪→)
387

388 ray.shutdown ()

Listing A.8: Our own Python code for inclusion proving

Bibliography

[AL21] Rahul Awati and Peter Loshin. Definition certificate author-
ity (ca), 2021. "https://www.techtarget.com/searchsecurity/
definition/certificate-authority"[Online; accessed 2024-11-01].

[all] List of known and announced ct logs. "https://www.gstatic.com/
ct/log_list/v3/all_logs_list.json".

[app] Apple’s certificate transparency policy. "https://support.apple.
com/en-ca/103214"[Online; accessed 2024-11-02].

[Art11] Charles Arthur. Rogue web certificate could have been used to
attack iran dissidents, 2011. "https://web.archive.org/web/
20170826175742/https://www.theguardian.com/technology/
2011/aug/30/faked-web-certificate-iran-dissidents"[Online;
accessed 2024-11-02].

[BH17] Jake A. Berkowsky and Thaier Hayajneh. Security issues with cer-
tificate authorities. In 2017 IEEE 8th Annual Ubiquitous Computing,
Electronics and Mobile Communication Conference (UEMCON), pages
449–455, 2017.

[bra] TLS Policy. "https://github.com/brave/brave-browser/wiki/
TLS-Policy"[Online; accessed 2024-11-02].

[BSP+08] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen
Farrell, and David Cooper. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 5280,
May 2008. "https://www.rfc-editor.org/info/rfc5280"[Online;
accessed 2024-11-01].

[CA-12] Trustwave issued a man-in-the-middle certificate,
2012. "https://web.archive.org/web/20120313085319/
http://www.h-online.com/security/news/item/

"https://www.techtarget.com/searchsecurity/definition/certificate-authority"
"https://www.techtarget.com/searchsecurity/definition/certificate-authority"
"https://www.gstatic.com/ct/log_list/v3/all_logs_list.json"
"https://www.gstatic.com/ct/log_list/v3/all_logs_list.json"
"https://support.apple.com/en-ca/103214"
"https://support.apple.com/en-ca/103214"
"https://web.archive.org/web/20170826175742/https://www.theguardian.com/technology/2011/aug/30/faked-web-certificate-iran-dissidents"
"https://web.archive.org/web/20170826175742/https://www.theguardian.com/technology/2011/aug/30/faked-web-certificate-iran-dissidents"
"https://web.archive.org/web/20170826175742/https://www.theguardian.com/technology/2011/aug/30/faked-web-certificate-iran-dissidents"
"https://github.com/brave/brave-browser/wiki/TLS-Policy"
"https://github.com/brave/brave-browser/wiki/TLS-Policy"
"https://www.rfc-editor.org/info/rfc5280"
"https://web.archive.org/web/20120313085319/http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html"
"https://web.archive.org/web/20120313085319/http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html"
"https://web.archive.org/web/20120313085319/http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html"

64 Bibliography

Trustwave-issued-a-man-in-the-middle-certificate-1429982.
html"[Archived 2021-03-13; Online; accesses 2024-11-01].

[Cer24] Certificate Transparency Project. How certificate transparency works,
2024. "https://certificate.transparency.dev/howctworks/
"[Accessed: 2024-11-01].

[Chi21] Hung-Yu Chien. Dynamic public key certificates with forward
secrecy. Electronics, 10(16), 2021. "https://doi.org/10.3390/
electronics10162009"[Online; accessed 2024-11-01].

[chr] Chrome certificate transparency policy. "https://googlechrome.
github.io/CertificateTransparency/ct_policy.html"[Online; ac-
cessed 2024-11-02].

[chr22] How does the certificate transparency check in chrome work?, 2022.
"https://groups.google.com/a/chromium.org/g/ct-policy/c/
FddjjCNIrLo"[Online; accessed 2024-11-02].

[DAM+15] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and
J. Alex Halderman. A search engine backed by Internet-wide scanning.
In 22nd ACM Conference on Computer and Communications Security,
October 2015.

[int] Intermediate Zertifikat. "https://ssl.de/ssl-glossar/
intermediate-zertifikat.html"[Online; accessed 2024-11-01].

[Int13] Digicert announces certificate transparency support,
2013. "https://www.darkreading.com/cyber-risk/
digicert-announces-certificate-transparency-support"[Online;
accessed 2024-11-02].

[Lau14] Ben Laurie. Certificate transparency. Communications of
the ACM, 2014. "https://dl.acm.org/doi/fullHtml/10.1145/
2659897"[Online; accessed 2024-11-02].

[LKL13] Adam Langley, Emilia Kasper, and Ben Laurie. Certificate transparency.
Internet Engineering Task Force, 2013.

[LLK13] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Trans-
parency. RFC 6962, June 2013. "https://www.rfc-editor.org/
info/rfc6962"[Online; accessed 2024-11-02].

[LPVGT+19] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczynski, and Wouter Joosen. Tranco: A research-oriented
top sites ranking hardened against manipulation. In Proceedings 2019
Network and Distributed System Security Symposium, NDSS 2019. In-
ternet Society, 2019. "https://arxiv.org/abs/1806.01156"[Online;
accessed 2024-11-02].

"https://web.archive.org/web/20120313085319/http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html"
"https://web.archive.org/web/20120313085319/http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html"
"https://web.archive.org/web/20120313085319/http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html"
"https://web.archive.org/web/20120313085319/http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html"
"https://certificate.transparency.dev/howctworks/"
"https://certificate.transparency.dev/howctworks/"
"https://doi.org/10.3390/electronics10162009"
"https://doi.org/10.3390/electronics10162009"
"https://googlechrome.github.io/CertificateTransparency/ct_policy.html"
"https://googlechrome.github.io/CertificateTransparency/ct_policy.html"
"https://groups.google.com/a/chromium.org/g/ct-policy/c/FddjjCNIrLo"
"https://groups.google.com/a/chromium.org/g/ct-policy/c/FddjjCNIrLo"
"https://ssl.de/ssl-glossar/intermediate-zertifikat.html"
"https://ssl.de/ssl-glossar/intermediate-zertifikat.html"
"https://www.darkreading.com/cyber-risk/digicert-announces-certificate-transparency-support"
"https://www.darkreading.com/cyber-risk/digicert-announces-certificate-transparency-support"
"https://dl.acm.org/doi/fullHtml/10.1145/2659897"
"https://dl.acm.org/doi/fullHtml/10.1145/2659897"
"https://www.rfc-editor.org/info/rfc6962"
"https://www.rfc-editor.org/info/rfc6962"
"https://arxiv.org/abs/1806.01156"

Bibliography 65

[MDO+22] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris Thompson,
Kevin Yeo, and Emily Stark. Sok: Sct auditing in certificate trans-
parency, 2022. "https://arxiv.org/abs/2203.01661"[Online; ac-
cessed 2024-11-02].

[Mil11] Elinor Mills. Fraudulent google certificate points to internet at-
tack, 2011. "https://web.archive.org/web/20111008200937/
http://news.cnet.com/8301-27080_3-20098894-245/
fraudulent-google-certificate-points-to-internet-attack/
"[Online; accessed 2024-11-02].

[mon] The list of existing monitors. "https://certificate.transparency.
dev/monitors/"[Online; accessed 2024-11-02].

[NN19] Kerry McKay (NIST) and David Cooper (NIST). Guidelines for the
selection, configuration, and use of transport layer security (tls) imple-
mentations. Technical Report NIST Special Publication (SP) 800-52,
Rev. 2, National Institute of Standards and Technology, Gaithersburg,
MD, 2019. "https://doi.org/10.6028/NIST.SP.800-52r2"[Online;
accessed 2024-11-01].

[OHR22] Chaeyeon Oh, Joonseo Ha, and Heejun Roh. A survey on tls-encrypted
malware network traffic analysis applicable to security operations cen-
ters. Applied Sciences, 12(1), 2022.

[rat22] Yeti 2022-2 rate limits, 2022. "https://groups.google.
com/a/chromium.org/g/ct-policy/c/AJ7msx2aWac/m/
oz9kh8HVAgAJ"[Online: accessed 2024-11-02].

[rat23] Google ct log - getting entries, 2023. "https://groups.google.com/g/
certificate-transparency/c/M0MI6kLYooM"[Online; accessed 2024-
11-02].

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446, August 2018. "https://www.rfc-editor.org/info/
rfc8446"[Online; accessed 2024-10-24].

[SBI13] Ijaz Ali Shoukat, Kamalrulnizam Abu Bakar, and Subariah Ibrahim. A
generic hybrid encryption system (hes), 2013. "http://dx.doi.org/
10.19026/rjaset.5.4793"[Online; accessed 2024-11-01].

[SMA+13] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani,
Slava Galperin, and Dr. Carlisle Adams. X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP. RFC 6960,
June 2013. "https://www.rfc-editor.org/info/rfc6960"[Online;
accessed 2024-11-01].

"https://arxiv.org/abs/2203.01661"
"https://web.archive.org/web/20111008200937/http://news.cnet.com/8301-27080_3-20098894-245/fraudulent-google-certificate-points-to-internet-attack/"
"https://web.archive.org/web/20111008200937/http://news.cnet.com/8301-27080_3-20098894-245/fraudulent-google-certificate-points-to-internet-attack/"
"https://web.archive.org/web/20111008200937/http://news.cnet.com/8301-27080_3-20098894-245/fraudulent-google-certificate-points-to-internet-attack/"
"https://web.archive.org/web/20111008200937/http://news.cnet.com/8301-27080_3-20098894-245/fraudulent-google-certificate-points-to-internet-attack/"
"https://certificate.transparency.dev/monitors/"
"https://certificate.transparency.dev/monitors/"
"https://doi.org/10.6028/NIST.SP.800-52r2"
"https://groups.google.com/a/chromium.org/g/ct-policy/c/AJ7msx2aWac/m/oz9kh8HVAgAJ"
"https://groups.google.com/a/chromium.org/g/ct-policy/c/AJ7msx2aWac/m/oz9kh8HVAgAJ"
"https://groups.google.com/a/chromium.org/g/ct-policy/c/AJ7msx2aWac/m/oz9kh8HVAgAJ"
"https://groups.google.com/g/certificate-transparency/c/M0MI6kLYooM"
"https://groups.google.com/g/certificate-transparency/c/M0MI6kLYooM"
"https://www.rfc-editor.org/info/rfc8446"
"https://www.rfc-editor.org/info/rfc8446"
"http://dx.doi.org/10.19026/rjaset.5.4793"
"http://dx.doi.org/10.19026/rjaset.5.4793"
"https://www.rfc-editor.org/info/rfc6960"

66 Bibliography

[Sol19] Ben Solomon. Introducing certificate transparency
monitoring, 2019. "https://blog.cloudflare.com/
introducing-certificate-transparency-monitoring/"[Online;
accessed 2024-11-02].

[ST20] Emily Stark and Chris Thompson. Opt-in sct au-
diting, 2020. "https://docs.google.com/document/d/
1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit?tab=t.
0#heading=h.4f9946en7wca"[Online; accessed 2024-11-02].

[Tec10] Microsoft TechNet. What are ca certificates?, 2010. "https://technet.
microsoft.com/en-us/library/cc778623(v=ws.10).aspx"[Online;
accessed 2024-11-01].

[Wan20] Tingmao Wang. How certificate transparency works, exactly, 2020.
"https://blog.maowtm.org/ct/en.html"[Online; accessed 2024-11-
02].

[Wol16] Josephine Wolff. How a 2011 hack you’ve never
heard of changed the internet’s infrastructure,
2016. "https://slate.com/technology/2016/12/
how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.
html"[Online; accessed 2024-11-02].

"https://blog.cloudflare.com/introducing-certificate-transparency-monitoring/"
"https://blog.cloudflare.com/introducing-certificate-transparency-monitoring/"
"https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit?tab=t.0#heading=h.4f9946en7wca"
"https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit?tab=t.0#heading=h.4f9946en7wca"
"https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit?tab=t.0#heading=h.4f9946en7wca"
"https://technet.microsoft.com/en-us/library/cc778623(v=ws.10).aspx"
"https://technet.microsoft.com/en-us/library/cc778623(v=ws.10).aspx"
"https://blog.maowtm.org/ct/en.html"
"https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html"
"https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html"
"https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html"

	Introduction
	Motivation
	Goals and Contribution
	Structure
	Information on language support

	Background
	Transport Layer Security (TLS)
	Certificate Authority (CA)
	Root Certificate Authorities (Root CAs
	Intermediate Certificate Authorities
	Certificate Revocation

	Certificate Transparency Logs (CT Logs)
	Merkle Trees
	Procedure
	Signed Certificate Timestamps (SCT)
	Precertificates
	API
	Monitoring
	Auditing
	Handling by browsers

	Approach
	Gathering of certificates
	IPv4
	Tranco's one million

	Verifying inclusion of certificates
	Google's Go library
	Own Python Code
	Censys.io

	Advantages and Disadvantages
	CT log on local machine
	sctchecker
	Own Python code
	Censys.io

	Combination of different techniques

	Implementation
	Gathering of certificates
	IPv4
	Tranco's one million

	Verifying inclusion of certificates
	Google's Go library
	Own Python Code

	Results
	Gathering of certificates
	Verifying SCTs
	IPv4
	Tranco's one million

	Downloading a CT Log

	Discussion
	Rate limiting and blacklisting
	Timely inclusion
	Independent code for using API
	Mirrors of CT logs

	Conclusion
	Appendix
	Bibliography

