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Abstract

Identifying instances of Transport Layer Security (TLS) being intercepted
in the Wild is crucial for ensuring secure Internet communications. This
thesis concentrates on the implementation of techniques for recogniz-
ing possible attempts at interception through the use of both legacy and
modern cryptographic technologies.

A client was created to utilize two distinct versions of OpenSSL to estab-
lish TLS connections with a server. These connections test various cipher
suites, including weak export-grade ciphers. Two different configurations
were used on the server side: one utilized a modern version of OpenSSL,
while the other was set up to support weak, insecure ciphers.These servers
log requests from the client that are unique and identifiable. Through the
use of VPN services such as NordVPN, the client was deployed across var-
ious geographical locations using 25 different VPN configurations, thereby
simulating connections frommultiple vantage points. This approach repli-
cates real-world circumstances and enhances the likelihood of detecting
interception attempts.

By examining server logs, the experiment seeks to pinpoint patterns that
suggest interception, including unique request retransmissions or alter-
ations in the ClientHello, such as the downgrading of cipher suites. Ad-
ditionally, the experiment leverages iframe paths to detect if intercepted
unique requests are subsequently accessed or if the iframe content de-
rived from the unique request is accessed, providing further evidence of
potential TLS interception.

In the evaluation phase, analysis of the server logs from over 22,000 con-
nections revealed a consistent match between the TLS configurations
embedded in the unique requests and those observed at the server. No-
tably, no retransmissions of unique requests or unauthorized accesses to
the corresponding iframe paths were detected.
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1 Introduction

One crucial technology for protecting online communication is Transport Layer Security (TLS).
Data sent between clients and servers is encrypted to prevent eavesdropping by a third party [8]. TLS
has become the de facto standard for securing a vast range of applications, including web browsing
and email. In fact, TLS underpins HTTPS, which is used by approximately 90% of all websites,
ensuring that sensitive information is transmitted securely across the globe [24].

However, the security of TLS can be compromised by interception, where a third party intercepts
and decrypts the communication. Interception might occur for a variety of reasons. Malicious
actors may exploit vulnerabilities to eavesdrop or manipulate data, but interception can also arise
in more benign contexts. For example, governments or network administrators might intentionally
intercept traffic for surveillance or security monitoring.

While modern TLS versions are generally considered secure, the possibility of unknown vulnerabili-
ties or attacks exploiting older versions remains [2]. This thesis assumes that an attacker may possess
knowledge of such a vulnerability, allowing us to explore the potential impact of TLS interception
and investigate methods for its detection.

This thesis aims to explore and implement multiple techniques for detecting TLS interception in
real-world scenarios, utilizing different methods. One technique involves using client-side code to
make numerous TLS requests that differ in their settings and using server-side code to log these
requests in a way that would help detect interceptions. Additionally, the client is deployed in various
parts of the world using VPN.

We will investigate various techniques for detecting interception.

This research aims to contribute to a better understanding of TLS interception techniques and
provide methods to detect TLS interceptions.

1.1 Motivation

In today’s digital landscape, Transport Layer Security has become an indispensable protocol for
securing communications across the internet. As highlighted earlier, history has repeatedly demon-
strated that attackers can potentially eavesdrop on and decrypt TLS communications. This inherent
vulnerability motivates this Bachelor thesis, which aims to explore and evaluate methods for detect-
ing TLS interception.

We will introduce detection techniques. A key focus will be on the practical implementation of
these methods. By implementing promising techniques, we can gain insights into their real-world
applicability and potential impact on existing applications. This implementation-driven approach
will help to create practical methods that will allow interception detection in the real-world.
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1.1. motivation 2

Language Model Assistance

In the preparation of this thesis, the author has utilized large language models (LLMs), including
ChatGPT, to assist with translation, sentence structuring, and overall improvements in readabil-
ity. These tools were employed solely to enhance the clarity and coherence of the language used
throughout the document. All technical content, analysis, and original contributions remain the
independent work of the author.



2 RelatedWork

Cloudflare’s blog post ”Monsters in the Middleboxes” discusses the prevalence of HTTPS inter-
ception on the internet and introduces two tools developed by Cloudflare to detect such practices:
MITMEngine, an open-source library that uses TLS fingerprinting to detect interceptions, and
MALCOLM, a dashboard displaying metrics about HTTPS interception observed on Cloudflare’s
network [14].

Xing et al. [26] conducted a global measurement study to investigate the phenomenon of ”traffic
shadowing,” where on-path observers capture network traffic and later generate unsolicited requests
based on the observed data. The study employed a VPN-based measurement platform with over
4,000 vantage points to send decoy traffic across various protocols (DNS, HTTP, TLS) and capture
resulting unsolicited requests. The researchers found that DNS queries were most susceptible to
shadowing, with a significant portion originating from IP addresses flagged as malicious. Notably,
the study observed unsolicited requests even after a 10-day interval, indicating potential long-term
retention of user data.

The findings of Xing et al. [26] highlight the privacy implications of traffic shadowing and emphasize
the need for further research to understand the motivations and mechanisms behind this behavior.
While my thesis focuses on TLS interception and exploitation of vulnerabilities, Xing et al. [26]
reveals that passive forms of interception like traffic shadowing can also compromise user privacy.
Both studies utilize VPNs for measurement, albeit with different setups and objectives. Finally, Xing
et al. [26] finding that a significant portion of traffic observers were located in China raises questions
about the role of such shadowing in Internet censorship and surveillance, a topic relevant to the
broader discussion of TLS interception and its implications.

Ćurguz, in [10], analyzes several vulnerabilities of the SSL/TLS protocol, focusing on the handshake
process.The author examines attacks such as the cipher suite rollback attack, version rollback attack,
and key exchange algorithm confusion. These attacks exploit weaknesses in the negotiation and
authentication mechanisms, allowing adversaries to force a connection to use weaker or even null
encryption schemes.

Ćurguz highlights that when the handshake process is compromised, the resulting security param-
eters may not adequately protect data confidentiality and integrity. The author emphasizes that
the ability of an attacker to manipulate the handshake process could, in practice, be exploited to
intercept secure communications. This underscores the critical importance of robust defenses in
SSL/TLS implementations to ensure that the negotiated parameters truly safeguard the transmitted
data.

An article from Security.org [22] explores use cases for internet censorship, defining it as the control
over what can be accessed, published, or viewed online. The motivations for censorship include:

É Political censorship: Suppressing information or opinions that are critical of a government or
political party.
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4

É Workplace censorship: Restricting access to inappropriate content to increase productivity.

É Safety censorship: Blocking access to inappropriate content to protect children.

The article also describes various methods used to implement censorship:

É DNS tampering:Manipulating DNS records to redirect users to incorrect or blocked websites.

É IP address blocking:Denying access to specific websites or online services based on their IP
addresses.

É Keyword filtering: Blocking access to content that contains specific keywords or phrases.

É Packet filtering: Selectively blocking or discarding network packets based on their content or
other characteristics.

É Traffic shaping: Prioritizing or limiting the bandwidth allocated to specific types of traffic,
which can slow down or block access to certain websites or services.

É Port number blocking: Blocking access to specific ports, thereby preventing communication
with certain applications or services.

Among these methods keyword filtering, packet filtering and traffic shaping are particularly relevant
to our work because they typically require TLS interception to be effectively implemented.



3 Background

3.1 Transport Layer Security

Transport Layer Security (TLS) is a protocol designed to ensure secure communication between
two entities by providing confidentiality, integrity, and authentication. Confidentiality ensures that
the transmitted data remains readable only to the intended parties. Integrity mechanisms ensure
that changes to the data during transmission are detected. Authentication verifies the identity of the
communicating parties, primarily the server, and optionally the client.

The TLS protocol is structured around two primary components: the handshake protocol and the
record protocol. The handshake protocol establishes the secure connection by authenticating the
participating entities, negotiating cryptographic parameters and encryption methods. This protocol
is designed to be resistant to manipulation, preventing attackers from influencing the selection of
cryptographic parameters. The record protocol then uses the established parameters to protect the
network traffic, ensuring confidentiality through encryption and maintaining integrity through
data verification methods [21].

3.1.1 TLS Versions and Evolution

Theevolution of Transport Layer Security (TLS) beganwith the development of Secure Sockets Layer
(SSL) by Netscape in 1995. SSL 1.0 and 2.0 were not publicly released due to security flaws. However,
SSL 3.0, introduced in 1996, addressed many of these vulnerabilities and became widely adopted. In
January 1999, the Internet Engineering Task Force (IETF) published RFC 2246, introducing TLS 1.0
as a standardized protocol to ensure interoperability across web browsers and servers. Subsequent
versions, TLS 1.1 and TLS 1.2, were released in 2006 and 2008, respectively, offering support for
more advanced cipher suites and improved security features. Despite these advancements, earlier
versions of TLS, including 1.0 and 1.1, lacked support for modern cryptographic algorithms and were
susceptible to various attacks. In 2018, TLS 1.3 was introduced, representing a significant overhaul of
the protocol. This version removed obsolete features and enhanced security The National Institute
of Standards and Technology (NIST) recommended organizations adopt TLS 1.3 to ensure robust
encryption for online interactions [13].

3.1.2 TLS Handshake

The TLS Handshake aims to authenticate both the server and, if desired, the client. Additionally,
during the handshake, cryptographic settings and encryption techniques are negotiated. From
TLS 1.0 to TLS 1.2, the TLS handshake follows a similar structure. However, TLS 1.3 introduces
several key changes to improve security and performance. These include the removal of outdated
cryptographic algorithms such as RSA key exchange and static Diffie-Hellman, the elimination of
handshake renegotiation to prevent downgrade attacks, and a shift to forward secrecy by mandating
ephemeral key exchanges. Additionally, TLS 1.3 removes unnecessary round trips.

5
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3.1.2.1 TLS 1.2 and Earlier Handshake

The TLS Handshake is a series of messages exchanged between a client and a server to establish
a secure connection. It ensures authentication, key exchange, and agreement on cryptographic
parameters. The handshake process in TLS 1.2 and earlier follows a structured sequence of message
exchanges, as specified in [11].

During the handshake, the client and server may use the Diffie-Hellman key exchange protocol to
securely negotiate a shared secret key for encryption.

Theprocess beginswith theClientHellomessage, where the client proposes supportedTLS versions,
cipher suites, and a randomly generated value. The server responds with a ServerHellomessage,
selecting a compatible TLS version and cipher suite.

To authenticate itself, the server provides aCertificatemessage, and in some cases, a ServerKeyEx-
changemessage is sent to facilitate key agreement. If mutual authentication is required, the server
issues a CertificateRequest before concluding its part of the handshake with ServerHelloDone.

The client then verifies the server’s certificate and proceeds with the ClientKeyExchangemes-
sage, transmitting key exchange parameters. If client authentication is requested, it also sends its
Certificate and a CertificateVerifymessage.

Finally, both parties confirm the completion of the handshake by exchanging ChangeCipherSpec
and Finishedmessages.This establishes an encrypted channel, ensuring confidentiality and integrity
for subsequent communication.

Figure 3.1:Overview of the TLS 1.2 Handshake.

1. Client Hello:The client initiates the handshake by sending a ClientHellomessage. This message
contains:

É The highest TLS protocol version supported by the client.
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É A random client-generated value, which will be used in the key derivation process.

É Optionally, a session ID, which can be used to resume a previous session if the client wants to
reuse already negotiated parameters.

É A list of cipher suites supported by the client, ordered by preference.

É A list of supported compression methods.

É An extensions list, containing optional extensions that the client wishes to use.

2. Server Hello:The server responds with a ServerHellomessage. This message contains:

É The selected TLS protocol version, chosen from the client’s list of supported versions.

É A server-generated random value.

É Optionally, a session ID.

É The selected cipher suite, chosen from the client’s list.

É The selected compression method.

É The extensions list, indicating which extensions the server supports.

3. Certificate: The server sends its certificate chain. This allows the client to authenticate the
server’s identity.The certificate must be appropriate for the chosen cipher suite and key exchange
algorithm. It should be signed by a trusted certificate authority and contain the server’s public
key.

4. Server Key Exchange:This message is optional and sent only if the server needs to provide
additional data for the key exchange process. This might be necessary if the chosen cipher suite
requires parameters that are not included in the server’s certificate.

5. Certificate Request:This message is optional. The server can request a certificate from the
client if client authentication is required.

6. Server Hello Done:The server signals the end of its messages with this message.

7. Client Certificate: If the server requested a certificate, the client sends its certificate chain in
this message.

8. Client Key Exchange:The client sends the key exchange data, which allows both parties to
compute the premaster secret. The exact content of this message depends on the chosen key
exchange algorithm.

9. Certificate Verify:This message is sent if the client provided a certificate. It contains a digital
signature, which allows the server to verify that the client possesses the private key corresponding
to the certificate.

10. Change Cipher Spec: Both client and server send this message to indicate that they will switch
to the negotiated cipher suite and encryption keys for the rest of the communication.

11. Finished: Both client and server send this message to verify that the key exchange and authenti-
cation were successful.

3.1.2.2 TLS 1.3 Handshake

The TLS 1.3 handshake introduces significant changes compared to TLS 1.0-1.2 [9, 21]. These changes
aim to enhance security, improve performance, and reduce handshake latency.
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The ClientHellomessage now includes parameters for calculating the premaster secret. This is
possible because the client can anticipate the server’s preferred key exchange method based on the
reduced set of supported cipher suites. This optimization minimizes the need for multiple rounds
of key exchange parameter negotiation.

After receiving the ClientHello, the server can immediately compute the master secret. The server
then sends a ServerHellomessage, which includes the following:

É The selected cipher suite.

É The server’s certificate.

É A digital signature for authentication.

É The server random value.

Additionally, the server sends the Finishedmessage in the same step, as it has already computed
the master secret. The client can then use the information from the ServerHello to compute the
master secret and send its own Finishedmessage.

Another major feature of TLS 1.3 is support for 0-Round Trip Time (0-RTT) resumption. This
allows a client to send application data in the very first message of a resumed session.

TLS 1.3 also removes several outdated or insecure features and algorithms. The following elements
are no longer supported [5]:

É RC4, 3DES and Camellia ciphers

É CBCmode ciphers

É SHA-1 and md5 hash function

É RSA key exchange

É Renegotiation

É Compression

3.1.3 The TLS Record Layer

The TLS Record Layer is responsible for ensuring the confidentiality, integrity, and authentication
of application data during transmission. It operates beneath the handshake protocol and applies the
cryptographic parameters negotiated during the handshake to secure the communication [11].

The responsibilities of the Record Layer include [11, 21]:

É Fragmentation: Incoming data from the application layer is segmented into TLS records with a
maximum payload size of 16,384 bytes.

É Compression: Prior to encryption, the data can be compressed to reduce its size. However,
starting fromTLS 1.3, compression has been removed to prevent attacks likeCRIME andBREACH
that exploit compression to recover secret information.

É Encryption:The fragmented data is encrypted using the negotiated cipher suite and keys. En-
cryption ensures that the transmitted data remains confidential.

É Message Authentication: AMessage Authentication Code (MAC) is computed and appended
to the record to ensure data integrity. The MAC allows the receiver to verify that the data has
not been changed during transmission. In TLS 1.3, authenticated encryption (AEAD) is used to
integrate encryption and authentication into a single operation.
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É Transmission:The encrypted and authenticated record is sent over the network to the recipient,
who then can decrypt and verify it.

3.2 TLS Interceptions

TLS interception generally refers to the situation where a third party is capable of decrypting a
TLS-protected communication between a client and a server or manipulating the transmitted data.
In this section, different methods of how a TLS connection could potentially be intercepted are
introduced.

3.2.1 Man-in-the-Middle Attack

A Man-in-the-Middle (MitM) attack occurs when a third party intercepts the communication
between a client and a server, allowing them to read, modify, or inject messages. To position
themselves between the client and server, attackers can employ various techniques, such as [6]:

É ARP poisoning:This technique exploits the Address Resolution Protocol (ARP) to redirect traffic
intended for the server to the attacker’s machine. This is typically effective within a local network
[20].

É IP spoofing:The attacker masquerades as the server by forging its IP address in outgoing packets.
To receive the responses, the attacker needs to be on the same network or on the path between
the client and the server.

É DNS spoofing:The attacker manipulates Domain Name System (DNS) records to redirect the
client to a malicious server under their control.

É On-path attacks: An attacker who controls a network device on the communication path
between the client and server, such as a router or firewall, can intercept and manipulate traffic.
This privileged position allows them to observe, modify, or block communication.

For a successful MitM attack, the attacker typically needs a forged certificate that the client will
accept or must obtain a legitimate certificate for the server through fraudulent means.

In a typical MitM attack scenario [6]:

1. The attacker intercepts the client’s initial connection request to the server.

2. The attacker then impersonates the server, presenting their own certificate to the client and
establishing a TLS connection.

3. Simultaneously, the attacker establishes a separate TLS connection to the legitimate server, acting
as a client.

4.The attacker can then relaymessages between the client and server, potentially reading, modifying,
or injecting data into the communication stream.

This effectively allows the attacker to eavesdrop on the communication and manipulate data. Ad-
ditionally, attackers can exploit vulnerabilities in the implementation or configuration of TLS to
compromise the security of the connection.

3.2.2 Weak Cipher Suites

TLS supports a variety of cipher suites, but not all of them are secure. For example, export cipher
suites were intentionally weakened during the crypto wars of the 1990s, when U.S. government
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regulations imposed restrictions on the export of strong cryptography. Their weaknesses stem from
the use of older cryptographic algorithms like MD5 and significantly limited key lengths [23].

Older ciphers like RC4, DES, and 3DES are also regarded as weak in addition to export ciphers.
An attacker may be able to decrypt network traffic if a client and server utilize a weak cipher suite
and they are able to intercept a sufficiently large volume of ciphertext. Furthermore, as the FREAK
attack illustrates, an attacker may attempt to force the usage of weak ciphers [19].

The FREAK attack exploits a vulnerability in OpenSSL to downgrade the TLS connection to use
export-grade cipher suites. The attack works as follows [19]:

1. The client sends a ClientHellomessage with RSA cipher suites.

2. The attacker, acting as a MitM, modifies the request to include export-grade RSA cipher suites.

3. The server responds with a 512-bit export-grade RSA key.

4. Due to a vulnerability in certain OpenSSL builds and different browsers the client accepts the
weak key.

5. The attacker can then recover the decryption key by factoring the RSA modulus, which is feasible
with a 512-bit key.

This allows the attacker to decrypt the communication and potentially steal sensitive information.

3.2.3 The BEAST Attack

TheBEAST (Browser Exploit Against SSL/TLS) attack, discovered in 2011 byThai Duong and Juliano
Rizzo, targeted a vulnerability in the way TLS 1.0 handled cipher block chaining (CBC) mode
encryption. This attack allowed an attacker to decrypt encrypted cookies and potentially hijack user
sessions [27].

The BEAST attack exploits the fact that in CBCmode, each block of plaintext is XORed with the
previous ciphertext block before being encrypted. This creates a dependency between blocks, which
an attacker can exploit. The attack works as follows:

1. The attacker positions themselves as a man-in-the-middle (MitM) between the client and the
server.

2. The attacker injects malicious JavaScript code into the client’s browser, for example, through a
compromised website.

3. The JavaScript code monitors the encrypted traffic between the client and the server. It also
manipulates the client’s requests, injecting arbitrary data into the plaintext.

4. By carefully crafting the injected data and observing the resulting ciphertext, the attacker can
deduce the value of the previous ciphertext block.

5. By repeating this process block by block, the attacker can decrypt the entire message, including
sensitive information like cookies. [27]

The goal of the BEAST attack is to decrypt encrypted cookies and potentially hijack active user
sessions.

3.2.4 Bleichenbacher’s Attack and ROBOT

Bleichenbacher’s attack, which was later revisited and expanded upon in the Return Of Bleichen-
bacher’s Oracle Threat (ROBOT) attack, is a type of adaptive chosen-ciphertext attack against RSA
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PKCS #1 v1.5 encryption.The original attack, introduced by Daniel Bleichenbacher in 1998, exploited
the ability to distinguish between correctly and incorrectly formatted PKCS #1 v1.5 padding after de-
cryption. This allowed an attacker to use a vulnerable server as an oracle to decrypt RSA ciphertexts
or forge signatures without knowing the private key [4].

3.2.4.1 Bleichenbacher’s Attack (1998)

This original attack relied on the server’s behavior when processing invalid ciphertexts. If the server
responded differently to valid and invalid ciphertexts, an attacker could exploit this information
to iteratively refine their knowledge about the plaintext. By sending a variety of ciphertexts and
observing the server’s responses, the attacker could eventually recover the entire plaintext [4].

3.2.4.2 ROBOT Attack (2018)

The ROBOT attack, presented by Hanno Böck, Juraj Somorovsky, and Craig Young in 2018, demon-
strated that Bleichenbacher’s attack was still applicable to modern TLS implementations, despite
countermeasures in the TLS standard [4]. ROBOT identified new side-channels that allowed attack-
ers to distinguish between valid and invalid padding values, such as:

É TCP resets

É TCP timeouts

É Duplicate alert messages

To mitigate these attacks, it is crucial to ensure that servers do not leak any information about the
validity of PKCS #1 v1.5 padding. One way to do that is to ensure that servers always respond with
the same error message, regardless of the padding validity.

3.2.5 The Logjam Attack

The Logjam attack is a man-in-the-middle attack that exploits the ability to downgrade a TLS con-
nection to export-grade cryptography [1]. This attack targets the Diffie-Hellman (DH) key exchange
used in TLS and is particularly effective against servers that support outdated ”export-grade” DH
cipher suites with 512-bit primes.
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3.2.5.1 Attack Description

The attack proceeds as follows:

1. Downgrade:The attacker intercepts the TLS handshake and modifies the client’s ClientHello
message to request only export-grade DH cipher suites.

2. Handshake Manipulation: The attacker also modifies the server’s ServerHello message to
indicate that a non-export cipher suite has been selected, deceiving the client.

3. Key Exchange:The server sends its Diffie-Hellman parameters with a 512-bit prime. The client,
believing it is using a stronger cipher suite, accepts these parameters.

4. Discrete Log Computation:The attacker, having performed precomputation for common
512-bit DH groups, can quickly compute the discrete log of the server’s public key. This allows
them to derive the shared secret and the session keys.

5. Decryption and Impersonation:The attacker can now decrypt the communication between
the client and the server and impersonate either party.

3.2.5.2 Impact andMitigations

To mitigate the Logjam attack, it is essential to:

É Disable export-grade cipher suites on TLS servers.

É Use sufficiently large DH groups (at least 2048 bits) to prevent feasible discrete log computations.

É Update clients and servers to the latest versions of TLS, which include countermeasures against
downgrade attacks.

3.2.6 TLS/SSL Stripping

While not a TLS interception method in the strict sense, TLS/SSL stripping is a technique that
allows an attacker to circumvent the encryption provided by HTTPS [3]. It was popularized by
Moxie Marlinspike in 2009. The attacker exploits the fact that many users do not explicitly type
”https://” in the address bar and instead rely on websites to redirect them to the secure HTTPS
version.

The attack works as follows:

1. The client attempts to connect to a website using HTTPS.

2. The attacker intercepts the connection and redirects the client to the unencrypted HTTP version
of the site.

3. The client, unaware of the downgrade, sends sensitive information such as login credentials in
cleartext to the attacker.

4. The attacker establishes a separate HTTPS connection to the server, forwarding the client’s data
and relaying the server’s responses back to the client.

This effectively allows the attacker to eavesdrop on the communication.

Website operators can implement HTTPS Strict Transport Security (HSTS), which forces browsers
to always use HTTPS for their site.
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3.3 Interception Detection Techniques

There are many different methods to detect and prevent TLS interception, each with its own
advantages and disadvantages. This section will introduce some of the techniques.

3.3.1 Key Pinning

Key pinning is a technique that allows a client to compare the certificate it receives from the server
to a previously stored, known certificate. This enables the client to detect a man-in-the-middle
(MitM) attack if the attacker uses a forged certificate. There are different variations of key pinning
[7]:

1. With Client History:The client stores a certificate from a previous connection and compares it
to the certificate presented by the server in subsequent connections. If the certificate has changed,
it could indicate a MitM attack. This method requires that the initial connection was secure and
trustworthy. False positives can occur if the server legitimately changes its certificate. This issue
is exacerbated by the increasing use of short-lived certificates, such as those from Let’s Encrypt,
which necessitate more frequent renewals and increase the likelihood of false positives [12].

2. With Server:The server sends certificate attributes to the client, which are unlikely to change,
so the client can pin these attributes. For example, the server could provide a set of public keys
that must be present in all certificates. This method also assumes that the first connection is
trustworthy. False positives are less likely with this approach.

3. With Preload: Browser vendors can include pins for specific websites within the browser itself.
For example, Google pins certificates for its own domains and others upon request. This method,
unlike the previous ones, does not require trusting the first connection, as long as the browser is
trusted and installed securely. False positives are unlikely as long as the browser keeps the pins
updated.

4. With DNS:The DNS-based Authentication of Named Entities (DANE) protocol allows servers
to pin their public key in their DNS records, secured by DNSSEC. Clients can use DANE to
validate server certificates by retrieving the public key from the DNSSEC-protected record. This
method does not require trust on the first connection as long as the DNSSEC record and the
nameserver are trusted. False positives are unlikely to occur.

3.3.2 Multipath Probing

The following discussion of Multipath Probing is derived from the findings of Clark and van
Oorschot [7]. The method of Multipath Probing involves a client obtaining certificates through
independent observers distributed across the internet. The client compares these certificates with
the one it received directly to ensure there is no local Man-in-the-Middle (MitM) attack. By relying
on independent sources, this method significantly reduces the likelihood of false positives. However,
this approach is ineffective if an attacker controls a network segment through which the client
accesses the independent observers, making it impossible for the client to verify the authenticity of
the received certificates through independent means.

3.4 Virtual Private Network

A Virtual Private Network (VPN) is a service that creates a secure, encrypted connection over a
public network like the Internet. It allows users to establish a protected link between their device
and a VPN server, essentially extending a private network across a public one, enabling secure
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data transmission. VPNs are commonly used to protect privacy, enhance security, and bypass
geographical restrictions [18].

VPNs function by using tunneling protocols (e.g., IPsec, SSL/TLS, OpenVPN) to encapsulate and
encrypt data at the sending end and decrypt it at the receiving end. This process hides your IP
address, encrypts your internet traffic, and routes it through the VPN server, effectively masking
your online identity and location . By connecting to a VPN server in a different location, your
internet traffic appears to originate from that server. VPNs link the user’s client to the IP address of
the VPN server [18].



4 Methodology

The goal of our experiment is to detect and analyze TLS interceptions in the real world. We achieve
this goal by combining a honeypot setup with systematic cipher testing. This experiment aims to
detect TLS interceptions and uncover potential vulnerabilities and attack patterns.

This chapter describes the design and strategy of our experiment. It outlines the components of the
setup, the data collection process, and the detection mechanisms used.

4.1 Overview of Approach

This experiment is structured to simulate real-world TLS communication and to check for TLS
interception. The basic idea is to use a client-server architecture where:

É A client initiates TLS connections to a server using various TLS configurations and cipher suites,
including weak ones. In doing so, the client sends unique requests to the server.

É The server logs requests that are structured like the unique requests, along with information
about the request that might help to identify an interception.

É VPN connections are used to simulate geographically different connections and to examine
interception attempts from diverse network paths.

4.2 Experimental Setup

Honeypot Server

Client

VPN Connection

Vantage Point

multiple https requests Attacker

retransmission of unique requests

Figure 4.1: Experimental Setup. Map source: Simplemaps.com (2020), MIT License.

15



4.2. experimental setup 16

4.2.1 Client

The client is designed to connect with a wide range of TLS configurations. To achieve this, two
different OpenSSL versions are used. One OpenSSL instance is an older version with support for
export-grade ciphers and other weaker ciphers that are not available in more modern versions
of OpenSSL. The second instance of OpenSSL is a more modern version to also support modern
ciphers.

The client attempts to establish TLS connections with the server using all supported cipher suites
that each OpenSSL instance offers. The client also sends a unique HTTPS request to the server,
structured as follows:

www.destination.de/path/<AES-encrypted: time&tlsversion&cipher>

This unique path contains the expected TLS configuration for the connection and is very unlikely to
be accessed randomly. This characteristic will help in identifying any retransmissions or manipula-
tions of the connection.

4.2.2 Server

The server setup uses two different OpenSSL instances. One instance uses an older version of
OpenSSL configured to support export-grade and other weak cipher suites. The other instance uses
a more modern version of OpenSSL to handle modern ciphers that are not supported by the older
version. Both instances work under the same IP and are be reachable through the HTTPS port 443.
To achieve this, a single Nginx server is configured as a TCP passthrough that listens on port 443
and forwards requests based on Server Name Indication (SNI).

Utilizing both modern and legacy OpenSSL instances enables a comprehensive evaluation of po-
tential TLS interception vulnerabilities. This approach allows us to test a broad spectrum of cipher
suites, including export-grade ciphers. Furthermore, employing a TCP passthrough guarantees the
preservation of the original TLS handshake.

For each unique HTTPS request, the server replies with an iframe that includes a unique path
associated with the original request. This path aids in identifying any intercepted connections.

The server is configured to log the HTTPS requests and information about the connection, such as
the TLS version, cipher suite, and client IP address.

4.2.3 VPNs

To simulate connections from different locations, we use NordVPN with OpenVPN configurations.
This allows the client to connect to the server through different network paths, increasing the
potential for encountering an attacker. For the experiment, we utilize 25 OpenVPN configurations
from NordVPN, listed in Chapter 5. It is important to note that these 25 configurations yield more
than 25 distinct IP addresses. The use of multiple VPN configurations is critical for replicating the
diversity of real-world network conditions, as interception techniques may vary across different
geographic regions and network infrastructures. This variation is often due to legal and regulatory
reasons, as different countries and jurisdictions have different laws and regulations regarding internet
surveillance and data interception. Some countries may permit or evenmandate interception for law
enforcement or national security purposes, while others may have strict privacy laws that prohibit
or limit interception. By testing connections from various vantage points, the experiment aims to
capture a more comprehensive picture of potential TLS interception vulnerabilities.
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4.3 Collection of Data

In this experiment, we collect the following data from the connections:

É The accessed path from the HTTP request, which contains information about the date/time, used
TLS version, and cipher suite.

É The client IP address.

É The virtual host (SNI), which indicates which server the client connected to.

É TheUser-Agent.

É The effectively used TLS version.

É The effectively used cipher suite.

É A timestamp indicating when the message arrived.

É The unique iframe path for each HTTPS request.

É Accessed iframe paths, with the corresponding path that sent the iframe path.

4.4 Detection Strategy

Several indicators can reveal potential TLS interceptions.

Re-accessed Unique Path: If a unique path is accessed a second time, TLS interception is likely.
The probability of random bots accessing these long, encryption-derived paths is extremely low,
considering their length, the information they contain, and the use of random nonces.

TLS Version and Cipher Suite Discrepancies: Logged information about TLS versions and
cipher suites provides another strong indicator. The unique path contains details about the TLS
version and cipher suite the client intends to use. If these differ from the recorded TLS version
or cipher suite actually used for the connection, it suggests an attacker is attempting to interfere
with the TLS handshake. This is because the client should only use the cipher suite from the path
for the handshake, which should force the server to choose the cipher that is also encoded in the
path. Two server-side scripts (see Appendix A.6) automate this analysis: one checks for TLS version
discrepancies, and the other compares the cipher suite.

Iframe Path Access:The iframe path offers another detection method. The client is configured to
request only the main path; the iframe and its path are part of the server’s response. Direct access to
the iframe path indicates a leak or interception, as its length and construction make random access
highly improbable. Any access to the iframe path, whether directly or via a browser accessing the
main path, will be logged by the server. This is because the client itself never requests the iframe.

Timestamp Analysis: Timestamps can also reveal interceptions. An unusually long request time
compared to other requests from the same vantage point suggests potential TLS interception. This
assumes a reasonably consistent network environment for comparison.

4.5 Rationale for Expected Access

É Curiosity: Attackers, driven by their inquisitive nature, often explore all available avenues within
a target system.This inherent curiosity extends to seemingly insignificant elements like the iframe
path, which may be accessed simply to gain a more complete understanding of the website’s
structure or potential vulnerabilities.
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É Automated Scanning:The widespread use of automated tools by attackers for vulnerability
scanning and information gathering further increases the likelihood of the iframe path being
accessed.These tools systematically follow all links and paths, including the iframe path, regardless
of their perceived importance.This indiscriminate approach increases the likelihood of the iframe
path being accessed, even without specific targeting by the attacker.

4.6 Rationale for the DetectionMethod

The rationale behind this method is that it can help detect TLS interceptions through multiple
indicators. With this honeypot setup, it is possible to identify an attacker regardless of the specific
attack technique employed. This method relies on the assumption that an attacker, if present, will
be curious enough to access either the unique request path or the corresponding iframe after
successfully intercepting the TLS connection.

Furthermore, the technique allows for the detection of manipulations in the ClientHello message.
Since theTLS version and cipher suite information are embedded in the unique path, any discrepancy
between the intended values and those observed in the connection may indicate that an attacker has
altered the handshake. This is particularly useful for detecting downgrade attacks.

Additionally, the time difference between the timestamp in the unique path and the time at which
the request reaches the server may serve as an indicator of TLS interception, if there are significant
discrepancies compared to other tested connections.

The use of two different OpenSSL versions—one modern (1.1.1f) and one legacy (1.0.2u)—enables
the client to test a wide range of cipher suites, including those known to be insecure. This approach
allows for the detection of various types of attackers. An attackermight exploit known vulnerabilities
in weak cipher suites to intercept the connection. Conversely, an attackermay also employ unknown
methods that are effective against modern cipher suites. Moreover, the inclusion of the eNULL cipher
suite further assists in detecting interception, as any leakage of a unique path would be evident.

Finally, it is important to note that even if no anomalies are detected, this does not conclusively
prove the absence of an attacker—it only indicates that, under the conditions of the experiment, no
overt manipulations (such as retransmission of unique paths or unauthorized iframe accesses) were
observed.



5 Implementation

This chapter provides detailed information about the technical implementation of the experiments
described in Chapter 4. It offers insights into the tools, configurations, and scripts used to create the
client-server setup. The goal is to describe how the honeypot infrastructure was built to detect TLS
interceptions.

5.1 Server Setup

The server runs on a virtual machine (VM) with Ubuntu 20.04.6 LTS installed. This setup uses two
instances of Nginx version 1.27.3, each handling a different set of cipher suites.

5.1.1 First Nginx Instance

The first instance of Nginx is responsible for handling modern cipher suites and acts as a proxy,
allowing both Nginx instances to operate under the same IP address.

5.1.1.1 Dependencies and Preparation

To install and configure Nginx, we must first install the required build tools and dependencies:

1 sudo apt update

2 sudo apt install build-essential zlib1g-dev libpcre3-dev libssl-dev \

3 libxslt1-dev libgd-dev

5.1.1.2 Configuration

The first instance uses OpenSSL 1.1.1f, which is either pre-installed or can be installed via:

1 sudo apt install openssl

Weprepared the configuration in the downloadedNginx source folder using the following command:

1 ./configure \

2 --prefix=/usr/local/nginx \

3 --with-cc-opt='-g -O2 -fno-omit-frame-pointer \

4 -mno-omit-leaf-frame-pointer \

5 -ffile-prefix-map=/build/nginx-DlMnQR/nginx-1.27.3=. \

6 -flto=auto -ffat-lto-objects -fstack-protector-strong \

7 -fstack-clash-protection -Wformat -Werror=format-security \

8 -fcf-protection \

9 -fdebug-prefix-map=/build/nginx-DlMnQR/nginx-1.27.3=/usr/src/nginx-1.27.3 \

10 -fPIC -Wdate-time' \

11 --with-ld-opt='-Wl,-Bsymbolic-functions -flto=auto -ffat-lto-objects \

12 -Wl,-z,relro -Wl,-z,now -fPIC' \

13 --conf-path=/etc/nginx/nginx.conf \

14 --http-log-path=/var/log/nginx/access.log \

15 --error-log-path=stderr \

19
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16 --lock-path=/var/lock/nginx.lock \

17 --pid-path=/run/nginx.pid \

18 --modules-path=/usr/local/nginx/modules \

19 --http-client-body-temp-path=/var/lib/nginx/body \

20 --http-fastcgi-temp-path=/var/lib/nginx/fastcgi \

21 --http-proxy-temp-path=/var/lib/nginx/proxy \

22 --http-scgi-temp-path=/var/lib/nginx/scgi \

23 --http-uwsgi-temp-path=/var/lib/nginx/uwsgi \

24 --with-compat \

25 --with-debug \

26 --with-pcre-jit \

27 --with-http_ssl_module \

28 --with-http_stub_status_module \

29 --with-http_realip_module \

30 --with-http_auth_request_module \

31 --with-http_v2_module \

32 --with-http_dav_module \

33 --with-http_slice_module \

34 --with-threads \

35 --with-http_addition_module \

36 --with-http_flv_module \

37 --with-http_gunzip_module \

38 --with-http_gzip_static_module \

39 --with-http_mp4_module \

40 --with-http_random_index_module \

41 --with-http_secure_link_module \

42 --with-http_sub_module \

43 --with-mail_ssl_module \

44 --with-stream_ssl_module \

45 --with-stream_ssl_preread_module \

46 --with-stream_realip_module \

47 --with-http_geoip_module=dynamic \

48 --with-http_image_filter_module=dynamic \

49 --with-http_perl_module=dynamic \

50 --with-http_xslt_module=dynamic \

51 --with-mail=dynamic \

52 --with-stream=dynamic \

53 --with-stream_geoip_module=dynamic

This configuration enables several important modules:

É --with-http_ssl_module: Enables TLS functionality.

É --with-http_realip_module, --with-stream_realip_module: Ensures the client’s real IP address is
preserved when the request is proxied internally.

É --with-stream_ssl_module, --with-stream_ssl_preread_module: Enables stream-based SSL han-
dling, allowing the server to act as a proxy and select the appropriate backend server based on
the SNI (Server Name Indication) in the handshake.

We installed the instance using:

1 make

2 sudo make install

We set the installation path to /usr/local/nginx.

5.1.2 Second Nginx Instance

We configured the second Nginx instance to handle export-grade and other weak cipher suites. It
uses OpenSSL 1.0.2u, which supports older and weaker ciphers.
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5.1.2.1 Configuration

The configuration process is similar to the first instance but includes additional steps to enable
legacy cipher suites. We used the following configuration command:

1 ./configure \

2 --prefix=/usr/local/nginx2 \

3 --with-cc-opt='-g -O2 -fno-omit-frame-pointer \

4 -mno-omit-leaf-frame-pointer \

5 -ffile-prefix-map=/build/nginx-DlMnQR/nginx-1.27.3=. \

6 -flto=auto -ffat-lto-objects -fstack-protector-strong \

7 -fstack-clash-protection -Wformat -Werror=format-security \

8 -fcf-protection \

9 -fdebug-prefix-map=/build/nginx-DlMnQR/nginx-1.27.3=/usr/src/nginx-1.27.3 \

10 -fPIC -Wdate-time ' \

11 --with-ld-opt='-Wl,-Bsymbolic-functions -flto=auto -ffat-lto-objects \

12 -Wl,-z,relro -Wl,-z,now -fPIC' \

13 --conf-path=/etc/nginx2/nginx.conf \

14 --error-log-path=/var/log/nginx2/error.log \

15 --http-log-path=/var/log/nginx2/access.log \

16 --pid-path=/var/run/nginx2.pid \

17 --lock-path=/var/lock/nginx2.lock \

18 --modules-path=/usr/local/nginx2/modules \

19 --http-client-body-temp-path=/var/lib/nginx2/body \

20 --http-fastcgi-temp-path=/var/lib/nginx2/fastcgi \

21 --http-proxy-temp-path=/var/lib/nginx2/proxy \

22 --http-scgi-temp-path=/var/lib/nginx2/scgi \

23 --http-uwsgi-temp-path=/var/lib/nginx2/uwsgi \

24 --with-compat \

25 --with-debug \

26 --with-pcre-jit \

27 --with-http_ssl_module \

28 --with-http_stub_status_module \

29 --with-http_realip_module \

30 --with-http_auth_request_module \

31 --with-http_v2_module \

32 --with-http_dav_module \

33 --with-http_slice_module \

34 --with-threads \

35 --with-http_addition_module \

36 --with-http_flv_module \

37 --with-http_gunzip_module \

38 --with-http_gzip_static_module \

39 --with-http_mp4_module \

40 --with-http_random_index_module \

41 --with-http_secure_link_module \

42 --with-http_sub_module \

43 --with-mail_ssl_module \

44 --with-stream_ssl_module \

45 --with-stream_ssl_preread_module \

46 --with-stream_realip_module \

47 --with-http_geoip_module=dynamic \

48 --with-http_image_filter_module=dynamic \

49 --with-http_perl_module=dynamic \

50 --with-http_xslt_module=dynamic \

51 --with-mail=dynamic \

52 --with-stream=dynamic \

53 --with-stream_geoip_module=dynamic \

54 --with-openssl=/home/okan/openssl-1.0.2u

Before running make, we modified the Makefile in the objs directory to ensure the legacy OpenSSL
features are included:



5.2. client setup 22

1 /home/okan/openssl-1.0.2u/.openssl/include/openssl/ssl.h: objs/Makefile

2 cd /home/okan/openssl-1.0.2u \

3 && if [ -f Makefile ]; then $(MAKE) clean; fi \

4 && ./config --prefix=/home/okan/openssl-1.0.2u/.openssl \

5 no-shared no-threads zlib \

6 enable-weak-ssl-ciphers enable-ssl2 enable-rc5 enable-rc2 \

7 enable-cms enable-md2 enable-mdc2 enable-ec enable-ec2m \

8 enable-ecdh enable-ecdsa enable-seed enable-camellia enable-idea \

9 enable-rfc3779 \

10 && $(MAKE) \

11 && $(MAKE) install_sw LIBDIR=lib

The modified Makefile ensures support for legacy ciphers such as RC4, MD5, and export-grade
ciphers. Afterward, we installed the instance using:

1 make

2 sudo make install

5.1.3 Flask Integration

We used Flask for responding to HTTPS requests and generating dynamic iframe responses. We
performed the following steps to set up Flask:

1. Install Python virtual environment support:

1 sudo apt install python3.8-venv

2. Create and activate a virtual environment:

1 python3 -m venv ~/flask_env

2 source ~/flask_env/bin/activate

3. Install Flask and required libraries:

1 pip install flask cryptography

The Flask application generates unique iframe paths for each request and logs connection details,
including the TLS version and cipher suite.

5.2 Client Setup

We ran the client on a virtual machine (VM) with Ubuntu 20.04.6 LTS installed.

We installed OpenVPN 2.4.12 on the client using the following command:

1 sudo apt install openvpn

The first instance of OpenSSL, version 1.1.1f, is preinstalled on Ubuntu 20.04. Alternatively, it can be
installed with:

1 sudo apt install openssl

We configured the second instance of OpenSSL, version 1.0.2u, with the following command:

1 ./config --prefix=/usr/local/openssl1.0.2 \

2 --openssldir=/usr/local/openssl1.0.2 \

3 shared zlib enable-weak-ssl-ciphers enable-ssl2 enable-rc5 \

4 enable-rc2 enable-GOST enable-cms enable-md2 enable-mdc2 \

5 enable-ec enable-ec2m enable-ecdh enable-ecdsa enable-seed \

6 enable-camellia enable-idea enable-rfc3779 -DOPENSSL_USE_BUILD_DATE

This configuration ensures that as many cipher suites as possible are activated. It is important to
note that we needed to run the following command before installing:
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1 make depend

After that, we built and installed the OpenSSL version using:

1 make

2 sudo make install

5.3 Server Implementation

The server setup involves two instances of Nginx, each using a different version of OpenSSL, to
simulate a variety of TLS configurations. This section describes the configuration and interaction
between these two instances, as well as the role of Flask for request handling.

5.3.1 First Nginx Instance (Modern Cipher Suites)

This Nginx instance is responsible to handle the more modern cipher suites. It uses OpenSSL 1.1.1f,
which in comparison to OpenSSL 1.0.2u also supports TLS 1.3.

We configured this Nginx instance to use the ngx streammodule because this server is the first access
point for the internet in our test setup. For this reason, we set up the server as a TCP passthrough.
The configuration for that looks like this:

1 server {

2 listen 443;

3 proxy_pass $upstream_server;

4 ssl_preread on;

5 proxy_protocol on;

6 }

The server listens on the HTTPS port 443 and passes the packet through depending on the SNI. For
that, ssl-preread is needed and used so that SNI can be read without establishing a TLS connection
already. Also, we need the proxy protocol to ensure that the servers will get accurate client IP and
port information instead of the IP and port of the Nginx instance.

We used the following configuration for the stream:

1 map $ssl_preread_server_name $upstream_server {

2 default legacy_openssl;

3 www.proxy2.com modern_openssl;

4 proxy2.com modern_openssl;

5 }

This sets the legacy server as default because it might lure more observers/attackers to the server if
they see that older cipher suites are supported. We chose the modern server when the SNI is set to
(www.)proxy2.com.

In this instance of Nginx, the HTTPS server listens on port 8002. It is important that the proxy
protocol is enabled. We configured it as follows:

1 listen 8002 ssl proxy_protocol;

With that, the server is capable of receiving the client IP from the stream server:

1 set_real_ip_from 127.0.0.1;

2 real_ip_header proxy_protocol;

We configured the server to support TLS 1.0 - TLS 1.3. We defined the following for the cipher
configurations:

1 ssl_ciphers ALL:@SECLEVEL=0;
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This ensures that the server does not reject ciphers that could potentially be unsafe.This configuration
allows the server to accept and negotiate a wide range of cipher suites, including weaker ones that
are required for the experiment.

Incoming requests are forwarded to the Flask application. Additionally, connection information
such as the host, real IP, protocol, and other details are sent to the Flask application using the
following configuration:

1 location / {

2 proxy_pass http://127.0.0.1:5000; # Forward to Flask app

3 proxy_set_header SSL-PROTOCOL $ssl_protocol;

4 proxy_set_header SSL-CIPHER $ssl_cipher;

5 proxy_set_header Host $host;

6 proxy_set_header X-Real-IP $remote_addr;

7 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

8 proxy_set_header X-Forwarded-Proto $scheme;

9 }

We configured the server to use two certificates: one RSA certificate and one DSA (Digital Sig-
nature Algorithm) certificate. Additionally, we included Diffie-Hellman (DH) parameters in the
configuration to support as many cipher suites as possible.

We created the RSA certificate with the following command:

1 sudo /usr/bin/openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout ./private/nginx-selfsigned.key -out

./certs/nginx-selfsigned.crt↩→

This command generates an RSA private key with a length of 2048 bits and a self-signed certificate
valid for 365 days.We left all certificate information at the default values, except for the CN (Common
Name), which we set to proxy2.com.

We created the DSA certificate with the following commands:

1 /usr/bin/openssl dsaparam -out dsaparam.pem 2048

2 /usr/bin/openssl gendsa -out server-dss.key dsaparam.pem

3 /usr/bin/openssl req -new -x509 -key server-dss.key -out server-dss.crt -days 365

We generated the DSA private key with a key length of 2048 bits. Like the RSA certificate, the DSA
certificate is self-signed and valid for 365 days.

We generated the Diffie-Hellman (DH) parameters with the following command:

1 /usr/bin/openssl dhparam -out dhparam.pem 1024

We chose a key length of 1024 bits for the DH parameters, which is considered weak by modern
cryptographic standards.

5.3.2 Second Nginx Instance (Legacy Cipher Suites)

We built this Nginx instance with OpenSSL 1.0.2u to support export-grade and other weak cipher
suites.

In this instance ofNginx, theHTTPS server listens on port 8001. It is crucial that the proxy protocol is
enabled, similar to the first Nginx instance. In general, the configuration of this server is very similar
to the first one. We set the server name to www.proxy1.com and proxy1.com. This server also uses the
proxy protocol and real_ip_header, ensuring that the real client IP is forwarded correctly. To allow
the widest possible range of cipher suites, the server is configured to accept all ciphers, including
eNULL. This enables the detection of potential observers attempting to retransmit a unique request
without encryption. This server also uses two certificates and Diffie-Hellman (DH) parameters to
support a broad range of legacy cipher suites.
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We created the RSA certificate with the following command:

1 sudo /usr/bin/openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout ./private/nginx-selfsigned.key -out

./certs/nginx-selfsigned.crt↩→

This command generates an RSA private key with a length of 2048 bits and a self-signed certificate
valid for 365 days. We kept all certificate details at their default values, except for the CommonName
(CN), which we set to proxy1.com. We created the DSA certificate with the following commands:

1 /usr/local/openssl1.0.2/bin/openssl dsaparam -out dsaparam.pem 1024

2 /usr/local/openssl1.0.2/bin/openssl gendsa -out server-dss.key dsaparam.pem

3 /usr/local/openssl1.0.2/bin/openssl req -new -x509 -key server-dss.key -out server-dss.crt -days 365

We chose a key length of 1024 bits to ensure compatibility with legacy cipher suites.

We generated the Diffie-Hellman (DH) parameters with the following command:

1 /usr/local/openssl1.0.2/bin/openssl dhparam -out dhparam.pem 512

We chose a key length of 512 bits to support older cipher suites, especially the export-grade ci-
pher suites. However, this is considered insecure by modern cryptographic standards. The reduced
key length increases the likelihood that an attacker could compute the shared secret using mod-
ern computational resources, but for the purpose of this experiment, it enables testing of legacy
cryptographic mechanisms.

Identical to the first Nginx instance, this server also forwards incoming HTTPS requests to the Flask
application for processing. For this, we utilized the same Flask application used in the first instance.
This setup ensures that we correctly forward all relevant metadata about the connection, includ-
ing the selected cipher suite and protocol version, to the Flask application. The Flask application
processes the incoming requests and logs the necessary information for subsequent analysis.

5.3.3 Flask Application

The Flask application handles all requests for both Nginx instances. To achieve this, the application
uses dynamic routing. As described in the methodology, we define the unique paths we track as
follows:

1 @app.route('/path/<encrypted_path_hex>', methods=['GET'])

Wedesigned the Flask application to attempt decryption of the encrypted_path_hex using AES-GCM.
If decryption is successful, the application logs the decrypted path, which contains information
about the timestamp, TLS version, and cipher suite used in the connection. Additionally, Flask
logs the client IP, virtual host (vHost), User-Agent, TLS version, and cipher suite as received and
processed by the Nginx server.

Furthermore, the application generates a timestamp and logs both the encrypted path and the
corresponding iframe path. We constructed the iframe path as follows:

1 inside_path = f"https://{server-ip}/c/{encrypt(encrypted_path_hex,key)}"

This means the iframe path is an encrypted version of the original encrypted path. The Flask
application responds to such requests with a response containing only the iframe.

We handle iframe paths in a similar manner. However, in addition to logging the iframe path, we
also record the corresponding main path. We log all other metadata, including the client IP, TLS
version, and cipher suite, similarly to the main path.

The response to an iframe request is a simple HTTP 200 status. For any other requests that do not
match the predefined paths, the application returns an HTTP 404 ”Page Not Found” error.
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5.4 Client Implementation

The client is responsible for initiating TLS connections to the server using various cipher suites and
TLS versions. Its primary objectives are:

É Establishing TLS connections using both modern and legacy OpenSSL versions.

É Sending unique, encrypted requests containing metadata about the connection (timestamp, TLS
version, and cipher suite).

É Logging connection results to identify successful and failed cipher suites.

É Testing connections over different VPN paths to detect possible TLS interceptions.

We implemented the client as a Python script running on an Ubuntu 20.04.6 LTS virtual machine. It
utilizes two OpenSSL versions:

É Modern OpenSSL (1.1.1f) for TLS 1.3 and strong cipher suites.

É Legacy OpenSSL (1.0.2u) for weak and export-grade ciphers no longer supported in modern
OpenSSL.

5.4.1 Generating and Encrypting Unique Paths

To track and detect potential TLS interceptions, the client sends unique paths in its requests. We
encrypt these paths using AES-GCM before including them in the HTTP request.

5.4.1.1 Key Generation and Encryption

We derived a static encryption key using PBKDF2 with the following parameters:

É Password: "tls_testing_password"

É Salt: "tls_testing_salt"

É Key Length: 128-bit (16 bytes)

É Iterations: 100,000

Each request contains an encrypted path that includes:

É time= Timestamp of the request.

É tls= TLS version used for the connection.

É cipher= Cipher suite used for the connection.

Example plaintext metadata before encryption:

1 time=2025-01-29T22:49:52.049270&tls=tls1_1&cipher=ADH-DES-CBC-SHA

After encryption, we convert the data to hexadecimal format and include it in the request URL:

1 https://proxy1.com/path/<AES-GCM-encrypted-hex>

5.4.2 Establishing TLS Connections with OpenSSL

The client establishes TLS connections using OpenSSL’s s_client command. The general structure
of the OpenSSL command is:

1 openssl s_client -connect <host:port> <tls-version> -servername <sni> -cipher <cipher> -ign_eof
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In Python, we dynamically built this command as follows:

1 command = [

2 openssl_path, "s_client",

3 "-connect", f"{host}:{port}",

4 f"-{tls_version}",

5 "-servername", servername,

6 "-ign_eof"

7 ]

8 if not is_tls13:

9 command.extend(["-cipher", cipher])

The -servername option ensures that the client uses the correct Server Name Indication (SNI). The
-cipher option applies only to TLS versions prior to TLS 1.3, as the installed OpenSSL instance does
not allow manual selection of cipher suites in TLS 1.3.

5.4.3 Sending the HTTP Request

After establishing the TLS connection, the client sends an HTTP request that includes the unique
encrypted path

1 request = f"GET {path} HTTP/1.1\r\nHost: {servername}\r\nConnection: keep-alive\r\n\r\n"

2 process.stdin.write(request)

3 process.stdin.flush()

The client then reads the server’s response to check if the connection was successful:

É 200 OK:The request was processed successfully.

É HTTP error code:The request failed.

É No response:The TLS handshake failed.

5.4.4 Logging Connection Results

The script stores results in the following files:

É connection_results.txt – Contains all connection attempts.

É successful_ciphers.txt – Lists only successful cipher suites.

É failed_ciphers.txt – Lists cipher suites that failed to establish a connection.

É openssl_commands.txt – Logs the executed OpenSSL commands for debugging.

5.4.5 Testing Cipher Suites Across Different TLS Versions

The client tests all available cipher suites for bothOpenSSL instances acrossmultiple TLS versions. It
uses the modern OpenSSL instance (1.1.1f) for TLS 1.3, TLS 1.2, and TLS 1.1, while the legacy OpenSSL
instance (1.0.2u) enables testing of cipher suites that modern OpenSSL no longer supports, including
export ciphers, DES, RC4, and other weak ciphers.

Instead of filtering specific cipher suites, the client retrieves the full list of supported ciphers from
each OpenSSL version and systematically attempts connections using every cipher with the corre-
sponding TLS versions.

To obtain the list of supported ciphers, the client executes the following command for each OpenSSL
instance:
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1 def get_ciphers(openssl_path):

2 result = subprocess.run([openssl_path, "ciphers", "-v", "ALL"],

3 capture_output=True, text=True)

4 ciphers = []

5 if result.returncode == 0:

6 for line in result.stdout.splitlines():

7 cipher = line.split()[0]

8 ciphers.append(cipher)

9 return ciphers

For each cipher, the client attempts connections using the appropriate TLS versions:

É Modern OpenSSL (1.1.1f) tests cipher suites with TLS 1.3, TLS 1.2, and TLS 1.1.

É Legacy OpenSSL (1.0.2u) tests cipher suites with TLS 1.2, TLS 1.1, and TLS 1.0.

Additionally, we manually added the eNULL cipher suite to the list of supported cipher suites, as
OpenSSL does not include it by default.

This ensures that the client tests all potential cipher suite and TLS version combinations.

Table 5.1: Selection of Tested Cipher Suites

TLS Version Cipher Suite
Strong andModern Cipher Suites

TLS 1.3 TLS_AES_256_GCM_SHA384
TLS 1.2 ECDHE-RSA-AES256-GCM-SHA384
TLS 1.2 ECDHE-RSA-CHACHA20-POLY1305
TLS 1.2 AES256-GCM-SHA384
TLS 1.2 CAMELLIA256-SHA256

Weak and Deprecated Cipher Suites
TLS 1.1 IDEA-CBC-SHA
TLS 1.0 ECDHE-RSA-RC4-SHA
TLS 1.0 ADH-RC4-MD5
TLS 1.0 DES-CBC3-SHA
TLS 1.0 EXP-EDH-RSA-DES-CBC-SHA
TLS 1.0 eNULL (No Encryption)

The table provides an overview of selected cipher suites tested during the experiment. A complete
list of all successfully tested cipher suites, categorized by TLS version, can be found in Appendix A.8.

5.4.6 Testing with OpenVPN

The client utilizes a script to connect to selected NordVPN configurations. These configurations
route only the connection to the destination server through the VPN tunnel, leaving other traffic
unaffected. This ensures that the client’s true IP address is masked, simulating connections from
various geographical locations.

After establishing the VPN connection, the client runs the Python script to initiate TLS connections
using all available cipher suites. We repeat this process for each selected NordVPN configuration
to ensure that the request script is executed frommultiple geographical locations, increasing the
likelihood of encountering potential interception attempts.

We selected the following NordVPN server configurations for the experiment:
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Table 5.2: Selected NordVPN Configurations Sorted by Continent

NordVPN Configuration Country Censorship/Interception
North America

ca1635.nordvpn.com.tcp.ovpn Canada No
mx54.nordvpn.com.tcp.ovpn Mexico No
us9811.nordvpn.com.tcp.ovpn United States No

South America
ar61.nordvpn.com.tcp.ovpn Argentina No
br75.nordvpn.com.tcp.ovpn Brazil No
co6.nordvpn.com.tcp.ovpn Colombia No

Europe
al53.nordvpn.com.tcp.ovpn Albania No
de1153.nordvpn.com.tcp.ovpn Germany No
is76.nordvpn.com.tcp.ovpn Iceland No
is78.nordvpn.com.tcp.ovpn Iceland No
it215.nordvpn.com.tcp.ovpn Italy No
pt103.nordvpn.com.tcp.ovpn Portugal No
rs76.nordvpn.com.tcp.ovpn Serbia No
uk1836.nordvpn.com.tcp.ovpn United Kingdom No

Asia
ae55.nordvpn.com.tcp.ovpn United Arab Emirates Yes [25]
il58.nordvpn.com.tcp.ovpn Israel No
jp744.nordvpn.com.tcp.ovpn Japan No
kr114.nordvpn.com.tcp.ovpn South Korea No
sg546.nordvpn.com.tcp.ovpn Singapore Yes [16]
tr54.nordvpn.com.tcp.ovpn Turkey Yes [17]
tw193.nordvpn.com.tcp.ovpn Taiwan No

Africa
ng5.nordvpn.com.tcp.ovpn Nigeria Yes [15]
za128.nordvpn.com.tcp.ovpn South Africa No

Oceania
au649.nordvpn.com.tcp.ovpn Australia No
nz98.nordvpn.com.tcp.ovpn New Zealand No

These configurations represent a diverse range of geographical locations and network environments,
enhancing the experiment’s ability to detect potential interception attempts from various vantage
points.



6 Evaluation and Discussion

6.1 Data Analysis

We analyzed the data collected from the server logs—including IP addresses, access paths, TLS
versions, and cipher suites—to identify patterns indicative of TLS interception.The analysis focuses
on detecting retransmissions of unique requests, discrepancies between the intended and the actual
TLS configurations, and unauthorized access to iframe paths. Notably, a total of 22,758 connections
were established from various VPN endpoints during the experiment, originating from 144 distinct
IP addresses.

6.2 Key Findings

Our analysis of the server logs revealed that:

É We observed no retransmissions of unique requests.

É There was no evidence of unauthorized access to iframe paths.

É The cipher suites and TLS versions embedded within the unique request paths match the TLS
configurations reported by the Nginx server.

6.3 Interpretation

Our analysis of the server logs revealed no retransmissions of unique requests and no unauthorized
iframe accesses. This suggests that, within the scope of this experiment, we observed no clear
evidence of active TLS interception. However, it is important to note that this result does not
definitively prove that no attacker is present. The detection method employed in this experiment
relies on the assumption that an attacker, if intercepting TLS connections, would retransmit unique
requests or access the corresponding iframe paths. If an attacker chooses not to interact with these
unique paths or there is nothing indicative of an interception in the logged request, an interception
will not be detected.

Moreover, even if we do not find any discrepancies between the TLS configuration embedded in
the unique request and the actual TLS parameters observed at the server, this does not guarantee
that interception attempts are completely absent. Instead, our observations indicate that, for the
tested connections and under the given network conditions, we did not detect any manipulation of
the handshake or request paths. Therefore, while our experiment provides valuable insights into
the behavior of TLS connections under various configurations, it cannot conclusively rule out the
possibility of TLS interception in all scenarios.
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6.4 Additional Connection Statistics

We conducted the experiment on the following dates: 2025-01-22, 2025-01-27, 2025-01-29, 2025-01-30,
2025-01-31, 2025-02-01, 2025-02-05, 2025-02-06, 2025-02-09, 2025-02-11, 2025-02-12, 2025-02-13,
2025-02-14, and 2025-02-15.

We deliberately spread our connection tests over these dates to capture diverse network conditions.
Notably, no connections or handshakes were unexpectedly interrupted, except for a few instances
due to a server shutdown. While we focused on the 94 cipher suites that established successful
connections A.8, our script also attempted combinations that we expected to fail due to limitations
in OpenSSL or certificate prerequisites. We intentionally excluded these failed attempts from further
analysis, as our primary interest was in the reliably functioning connections.

6.5 Limitations

Our experiment has several limitations:

É Duration of the Experiment: Detecting TLS interception requires a significant number of
connection attempts. A longer observation period could increase the likelihood of detecting
interception.

É Limited Network Diversity:We were limited by the number of available VPN servers, which
reduced the diversity of network paths tested.

É Detection Method Assumptions:The approach assumes that an attacker will either retransmit
a unique request or access the iframe path. However, more sophisticated interception methods
might evade detection. Also, if an attacker is capable of decrypting the messages between the
client and server, theymay recognize that themain path only returns the iframe path, which could
deter them from accessing it. Therefore, the absence of iframe accesses does not conclusively rule
out the presence of an attacker.

É Lack of Valuable Content:The server currently does not serve any content other than the paths.
This may reduce the attractiveness of the server to potential attackers, as there is little incentive
to intercept or manipulate the traffic.

6.6 Implications and Future Directions

For future work, the experimental setup could be enhanced in several ways:

É Longer and More Frequent Testing: Extending the duration of the experiment and increasing
the frequency of requests would likely improve the detection rate of TLS interceptions.

É Expanded VPN Configurations: Utilizing a greater number of VPN servers would simulate a
broader array of network conditions, potentially increasing the likelihood of detecting intercep-
tion attempts.

É Enhanced Honeypot Content: To make the server a more attractive target for attackers, future
experiments could simulate a scenario in which the server appears to host valuable information,
such as an administrative panel, sensitive credentials, or a password manager. This could increase
the chances that an attacker would attempt to access the paths.
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In summary, while the experiment did not produce definitive evidence of TLS interceptions under
the tested conditions, its design provides a valuable framework for further investigation.The current
results indicate that no observable manipulation of the TLS handshake or paths occurred during
the test period. However, due to the experiment’s limitations and its reliance on specific attacker
behaviors, the absence of such evidence should be interpreted with caution. Future work addressing
the above points may yield a more comprehensive understanding of TLS interception in real-world
scenarios.



7 FutureWork

7.1 ServerHello Fingerprinting

In this section, we introduce a method for detecting TLS interceptions using ServerHello finger-
printing.

7.1.1 Attacker Model

We assume an attacker performing a Man-in-the-Middle (MitM) attack. The attacker sits on-path
between the client and the server, intercepting the communication and establishing separate TLS
connections with both. The attacker impersonates the server when communicating with the client
and impersonates the client when communicating with the server. This positioning enables the
attacker to manipulate the TLS handshakes with both parties and intercept or manipulate the data
exchanged between them.

7.1.2 ServerHello Fingerprinting

For fingerprinting, we capture the network packet from the client side and extract the following
information from the ServerHello message:

É TLS version

É Cipher suite

É Extensions

We then construct a fingerprint input string by concatenating the hexadecimal representations of
these values, separated by colons.

1 fingerprint_input = f"{hex(version)}:{hex(cipher)}:{','.join([hex(e) for e in extensions])}"

Finally, we compute the SHA-256 hash of this string to generate a unique fingerprint:

1 fingerprint = hashlib.sha256(fingerprint_input.encode('utf-8')).hexdigest()

This fingerprint can be used to identify inconsistencies or deviations from expected behavior in
the ServerHello message, which could indicate the presence of an attacker. The full code for this
fingerprinting method is provided in Appendix A.7. Please note that this code is specifically designed
for packets captured on the tun0 interface, which lacks an Ethernet layer. This is because the code
was developed and tested in a virtual machine environment where network traffic is routed through
a VPN tunnel.

To make this method more reliable, it is important to know how the server will construct the
ServerHello message. This method can be integrated with the methodology described in Section
4 because the client knows which TLS version, cipher suite, and extensions will be used for each
connection, regardless of the VPN connection.
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For this method to be more reliable, it is important to ensure that the ServerHello message has some
degree of uniqueness, such as in the extensions and their order. One approach to achieve this would
be to add custom extensions to the ServerHello message. This would make it more difficult for an
attacker to forge a ServerHello message that perfectly matches the legitimate server’s response, as
the attacker would need to replicate the custom extensions as well.

Server fingerprinting is only effective if the construction of the ServerHello message is predictable.
This technique can be easily integrated with the unique request method described in Section 4
because the expected structure of the ServerHellomessages is known beforehand. However, applying
server fingerprinting becomes challenging when the server is not under our control or when the
composition of the ServerHello message is not precisely predictable.

Furthermore, thismethod assumes that the attacker does notmimic the server’s ServerHellomessage,
including the TLS version, cipher suite, and extensions (including any custom extensions).Therefore,
it is necessary to introduce an element that the attacker cannot replicate. One possibility is to use a
custom extension to transmit information encrypted with a key shared with the client. For example,
the server could include a custom extension in the ServerHello message containing the client’s
IP address, port, and the timestamp of the Client Hello message, all encrypted with a key known
to the client. Since the attacker establishes a separate connection to the server, it is expected that
their connection will have a different timestamp in the TCP layer compared to the client’s original
connection. The client can then compare this information with its own Client Hello message to
detect discrepancies.

This approach is feasible only if the VPN does not alter the TCP layer or if the VPN servers are
under our control, allowing us to manipulate the relevant values.

7.1.3 Considerations and Limitations

This detection method requires prior knowledge of the expected ServerHello message structure
to identify anomalies and deviations. It also relies on the assumption that an attacker will not
meticulously analyze and replicate the original connection messages, including the TLS version,
cipher suite, and extensions in the correct order. While techniques like embedding encrypted
timestamps in custom extensions can be employed to mitigate this, they introduce dependencies on
other methods.

However, this method offers the advantage of potentially detecting a strong attacker capable of
performing on-path attacks and impersonating both the server and client. Another advantage is
that if an attacker does not develop their own tool for sending ServerHello messages or copies the
ServerHello information (including custom extensions), standard libraries are unlikely to send the
custom extensions from the server’s ServerHello message.

In summary, ServerHello fingerprinting can be a valuable technique for detecting TLS interception,
particularly when combined with other methods and when the server configuration is known or
predictable. However, it is essential to be aware of its limitations, especially when dealing with
sophisticated attackers who might attempt to forge ServerHello messages.



8 Conclusion

In this thesis, we investigated methods for detecting TLS interception in real-world scenarios by
implementing a honeypot server and a client that systematically tested various TLS configurations
and cipher suites. We simulated connections from different geographical locations using VPNs to
increase the likelihood of encountering interception attempts.

To achieve this, we designed an automated client that iterated through all available cipher suites
for different OpenSSL versions and established TLS connections with our honeypot server. The
client embedded details about the intended TLS configuration within the request path, allowing
us to later verify whether the observed parameters at the server matched the expected values. By
utilizingmultiple VPN endpoints spread across various countries, we aimed to test TLS interception
across diverse network conditions. Additionally, our server logged all incoming requests, including
client IP addresses, TLS parameters, and accessed paths, providing a comprehensive dataset for
post-experiment analysis.

Our analysis of the server logs revealed no clear evidence of active TLS interceptionwithin the scope
of our experiment. We did not observe any retransmissions of unique requests or unauthorized
iframe accesses. Additionally, the TLS configurations reported by the server consistently matched
the intended configurations embedded in the unique requests.

However, it is important to acknowledge the limitations of this experiment. The duration and
frequency of testing, the diversity of VPN configurations, and the assumptions made about attacker
behavior may have influenced the results. Additionally, the lack of valuable content on the server
might have reduced its attractiveness as a target for attackers.

Despite these limitations, this thesis provides a valuable framework for future research on TLS
interception detection. Further studies could address the limitations of this experiment by extending
the testing duration, expanding the range of VPN configurations, and enhancing the honeypot
content to attract more attackers.

In conclusion, while our experiment did not produce definitive evidence of TLS interception,
it contributes to a better understanding of TLS interception techniques and offers insights for
developing more robust detection methods. The findings highlight the importance of continuous
monitoring and testing of TLS connections to ensure secure communication in the ever-evolving
threat landscape.
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A Appendix

A.1 Client Code

1 import subprocess

2 import argparse

3 import os

4 from datetime import datetime

5 import hashlib

6 from cryptography.hazmat.primitives.ciphers.aead import AESGCM

7 from cryptography.hazmat.primitives import hashes

8 from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

9 from cryptography.hazmat.backends import default_backend

10

11 tested_combinations = set()

12

13 results = []

14

15 # AES-128 Key

16 # Generate a static key using PBKDF2

17 password = b"tls_testing_password"

18 salt = b'tls_testing_salt'

19 kdf = PBKDF2HMAC(

20 algorithm=hashes.SHA256(),

21 length=16,

22 salt=salt,

23 iterations=100000,

24 backend=default_backend()

25 )

26 key = kdf.derive(password)

27

28 # Encrypt using AES-GCM

29 def encrypt(data, key):

30 aesgcm = AESGCM(key)

31 nonce = os.urandom(12)

32 ciphertext = aesgcm.encrypt(nonce, data.encode(), None)

33 return nonce + ciphertext

34

35 # Get all Cipher from openssl

36 def get_ciphers(openssl_path):

37 result = subprocess.run([openssl_path, "ciphers", "-v", "ALL"], capture_output=True, text=True)

38 ciphers =

39 if result.returncode == 0:

40 for line in result.stdout.splitlines():

41 cipher = line.split()

42 ciphers.append(cipher)

43 return ciphers

44

45 # Function to test a connection with a specific cipher and TLS version

46 def test_connection(openssl_path, cipher, tls_version, host, port, ignore_cert, servername, is_tls13=False):

38
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47 # Set environment variable for keylogging if necessary ()

48 # if openssl_path == args.legacy_openssl:

49 # os.environ["SSLKEYLOGFILE"] = args.keylog_file

50

51 # Create path with timestamp, TLS version, and cipher

52 path_elements = f"time={datetime.now().isoformat()}&tls={tls_version}&cipher={cipher}"

53 encrypted_path_hex = encrypt(path_elements, key).hex()

54 path = f"/path/{encrypted_path_hex}"

55

56 request = f"GET {path} HTTP/1.1\r\nHost: {servername}\r\nConnection: keep-alive\r\n\r\n"

57 command = [

58 openssl_path, "s_client", "-connect", f"{host}:{port}", f"-{tls_version}", "-servername", servername,

"-ign_eof"↩→
59 ]

60 if not is_tls13:

61 command.extend(["-cipher", cipher])

62 if ignore_cert:

63 # openssl ignores certs validation per default

64 if openssl_path == args.modern_openssl:

65 command.extend(["-keylogfile", args.keylog_file])

66

67 try:

68 process = subprocess.Popen(

69 command,

70 stdin=subprocess.PIPE,

71 stdout=subprocess.PIPE,

72 stderr=subprocess.PIPE,

73 text=True

74 )

75 # Send the HTTP request

76 stdout_lines =

77 process.stdin.write(request)

78 process.stdin.flush()

79

80 while True:

81 line = process.stdout.readline()

82 if line == "" and process.poll() is not None:

83 break

84 stdout_lines.append(line)

85 if "200 OK" in line or "HTTP" in line:

86 # Close the connection cleanly

87 process.stdin.write("close\n")

88 process.stdin.flush()

89 process.terminate()

90 break

91

92 stdout = "".join(stdout_lines)

93

94 # Look for HTTP 200 OK in the response

95 if "200 OK" in stdout:

96 result = f"SUCCESS WITH PATH: TLS={tls_version}, Cipher={cipher}, Path={path},

Path_Elements={path_elements}"↩→
97 elif "HTTP" in stdout:

98 result = f"SUCCESS WITHOUT PATH: TLS={tls_version}, Cipher={cipher}, Path={path},

Path_Elements={path_elements}"↩→
99 else:

100 result = f"FAILED: TLS={tls_version}, Cipher={cipher}, Path={path},

Path_Elements={path_elements}, Response={stdout.strip()}"↩→
101 except Exception as e:

102 process.kill()

103 result = f"FAILED: TLS={tls_version}, Cipher={cipher}, Path={path}, Path_Elements={path_elements},

Error: {e}"↩→
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104

105 print(result)

106 with open("openssl_commands.txt", "a") as f:

107 f.write(" ".join(command) + "\n")

108 return result

109

110 if __name__ == "__main__":

111 parser = argparse.ArgumentParser(description="Test TLS connections with different configurations.")

112 parser.add_argument("host", help="The host to connect to.")

113 parser.add_argument("port", help="The port to connect to.")

114 parser.add_argument("--modern_openssl", default="/usr/bin/openssl", help="Path to the modern OpenSSL

version.")↩→
115 parser.add_argument("--legacy_openssl", default="/usr/local/openssl1.0.2/bin/openssl", help="Path to the

legacy OpenSSL version.")↩→
116 parser.add_argument("--keylog_file", default="/home/okan/keylog.txt", help="File to store TLS keys.")

117 parser.add_argument("--ignore_cert", action="store_true", help="Ignore certificate errors.") # openssl

doesnt care as default↩→
118 args = parser.parse_args()

119

120 # Test modern OpenSSL with TLS 1.3

121 print("Testing modern OpenSSL with TLS 1.3...")

122 result = test_connection(args.modern_openssl, "TLS_AES_256_GCM_SHA384", "tls1_3", args.host, args.port,

args.ignore_cert, "proxy2.com", is_tls13=True)↩→
123 results.append(result)

124

125 # Test modern OpenSSL with other TLS versions

126 print("Testing modern OpenSSL with other TLS versions...")

127 modern_ciphers = get_ciphers(args.modern_openssl)

128 for cipher in modern_ciphers:

129 for tls_version in ["tls1_2", "tls1_1"]:

130 if (tls_version, cipher) not in tested_combinations:

131 result = test_connection(args.modern_openssl, cipher, tls_version, args.host, args.port,

args.ignore_cert, "proxy2.com")↩→
132 results.append(result)

133 tested_combinations.add((tls_version, cipher))

134

135 # Test legacy OpenSSL

136 print("Testing legacy OpenSSL...")

137 legacy_ciphers = get_ciphers(args.legacy_openssl)

138 if "eNULL" not in legacy_ciphers:

139 legacy_ciphers.append("eNULL")

140

141 for cipher in legacy_ciphers:

142 for tls_version in ["tls1", "tls1_1", "tls1_2"]:

143 if (tls_version, cipher) not in tested_combinations:

144 result = test_connection(args.legacy_openssl, cipher, tls_version, args.host, args.port,

args.ignore_cert, "proxy1.com")↩→
145 results.append(result)

146 tested_combinations.add((tls_version, cipher))

147

148 # Write results to files

149 with open("connection_results.txt", "w") as f:

150 for result in results:

151 f.write(result + "\n")

152

153 with open("successful_ciphers.txt", "w") as f:

154 for result in results:

155 if "SUCCESS" in result:

156 tls_version = result.split("TLS=").split(",")

157 cipher = result.split("Cipher=").split(",")

158 f.write(f"{tls_version} - {cipher}\n")

159
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160 with open("failed_ciphers.txt", "w") as f:

161 for result in results:

162 if "FAILED" in result:

163 tls_version = result.split("TLS=").split(",")

164 cipher = result.split("Cipher=").split(",")

165 f.write(f"{tls_version} - {cipher}\n")

166

167 print("Successful ciphers saved to successful_ciphers.txt")

168 print("Failed ciphers saved to failed_ciphers.txt")

169 print("Results saved to connection_results.txt")

170 print(f"TLS keys saved to {args.keylog_file}")

171 print("OpenSSL commands saved to openssl_commands.txt")

A.2 VPN Connection and Script Execution Code

1 #!/bin/bash

2

3 TARGET_IP="185.73.23.156"

4 TARGET_PORT="443"

5

6 VPN_CONFIG_DIR="/etc/openvpn/ovpn_tcp/"

7

8 PYTHON_SCRIPT="/home/okan/connectingTLS.py"

9

10 run_python_script() {

11 echo "start connectingTLS.py with IP: $TARGET_IP and Port: $TARGET_PORT"

12 sudo python3 "$PYTHON_SCRIPT" "$TARGET_IP" "$TARGET_PORT"

13

14 if [ $? -ne 0 ]; then

15 echo "Error while running connectingTLS.py"

16 exit 1

17 fi

18 }

19

20 wait_for() {

21 local seconds=$1

22 echo "wait $seconds sec"

23 sleep "$seconds"

24 }

25

26 if [ "$EUID" -ne 0 ]; then

27 echo "has to be used with sudo"

28 exit 1

29 fi

30

31 if [! -f "$PYTHON_SCRIPT" ]; then

32 echo "error: python-script '$PYTHON_SCRIPT' nicht gefunden."

33 exit 1

34 fi

35

36 # first run without vpn

37 run_python_script

38

39 find "$VPN_CONFIG_DIR" -maxdepth 1 -name "*.ovpn" -print0 | while IFS= read -r -d $'\0' vpn_config; do

40

41 vpn_config_name=$(basename "$vpn_config")

42

43 echo "----------------------------------------"

44 echo "using VPN-config: $vpn_config_name"

45

46 echo "start openvpn with $vpn_config_name"
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47 sudo openvpn --config "$vpn_config" --daemon

48 if [ $? -ne 0 ]; then

49 echo "error starting openvpn: $vpn_config_name"

50 exit 1

51 fi

52

53 # wait to make sure tunnel is active

54 wait_for 15

55

56 run_python_script

57

58 echo "stop OpenVPN"

59 sudo pkill -f "openvpn"

60

61 # Wait to make sure openvpn stopped

62 wait_for 7

63

64 echo "----------------------------------------"

65 done

66

67 echo "script finished."

68 exit 0

A.3 First Nginx Instance Configuration

1 worker_processes 1;

2 load_module modules/ngx_http_geoip_module.so;

3 load_module modules/ngx_stream_module.so;

4 load_module modules/ngx_stream_geoip_module.so;

5

6 events {

7 worker_connections 1024;

8 }

9

10 stream {

11 # Map for SNI-detection to choose the Upstream

12 map $ssl_preread_server_name $upstream_server {

13 default legacy_openssl; # Standard-Backend

14 www.proxy2.com modern_openssl; # Legacy-Backend für alte OpenSSL

15 proxy2.com modern_openssl;

16 }

17

18 # Upstreams definieren

19 upstream modern_openssl {

20 server 127.0.0.1:8002; # Backend für moderne OpenSSL

21 }

22

23 upstream legacy_openssl {

24 server 127.0.0.1:8001; # Backend für Legacy OpenSSL

25 }

26

27 # TLS-Passthrough-Server

28 server {

29 listen 443;

30 proxy_pass $upstream_server; # Dynamische Auswahl des Backends

31 ssl_preread on; # Erlaubt SNI-Erkennung vor der TLS-Verhandlung

32 proxy_protocol on; # proxy protocol aktivieren

33

34 }

35

36 # Logging for Stream
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37

38 log_format custom_stream '$remote_addr:$remote_port -> $server_addr:$server_port '

39 'via $upstream_addr - SNI: $ssl_preread_server_name';

40 access_log /var/log/nginx/stream_access.log custom_stream;

41 error_log /var/log/nginx/stream_error.log;

42

43 }

44

45

46 http {

47 include mime.types;

48 default_type application/octet-stream;

49 access_log /var/log/nginx/access.log;

50 error_log /var/log/nginx/error.log warn;

51 sendfile on;

52 keepalive_timeout 65;

53

54 # HTTPS server

55 server {

56

57 listen 8002 ssl proxy_protocol;

58 listen [::]:8002 ssl proxy_protocol;

59

60 server_name www.proxy2.com proxy2.com;

61

62 set_real_ip_from 127.0.0.1;

63 real_ip_header proxy_protocol;

64

65 ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;

66 ssl_prefer_server_ciphers on;

67 ssl_ciphers ALL:@SECLEVEL=0;

68 ssl_certificate /home/okan/nginx/certs/nginx-selfsigned.crt;

69 ssl_certificate_key /home/okan/nginx/private/nginx-selfsigned.key;

70 # DSA-Zertifikat und Schlüssel

71 ssl_certificate /home/okan/nginx/certs/server-dss.crt;

72 ssl_certificate_key /home/okan/nginx/private/server-dss.key;

73 # DH-Parameter für ADH-Ciphers

74 ssl_dhparam /home/okan/nginx/dhparam/dhparam.pem;

75 location / {

76 proxy_pass http://127.0.0.1:5000; # Forward to Flask app

77 proxy_set_header SSL-PROTOCOL $ssl_protocol;

78 proxy_set_header SSL-CIPHER $ssl_cipher;

79 proxy_set_header Host $host;

80 proxy_set_header X-Real-IP $remote_addr;

81 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

82 proxy_set_header X-Forwarded-Proto $scheme;

83 }

84 }

85

86 }

A.4 Second Nginx Instance Configuration

1

2 worker_processes 1;

3 load_module modules/ngx_http_geoip_module.so;

4 load_module modules/ngx_stream_module.so;

5 load_module modules/ngx_stream_geoip_module.so;

6 events {

7 worker_connections 1024;

8 }
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9

10 http {

11 include mime.types;

12 default_type application/octet-stream;

13 sendfile on;

14 keepalive_timeout 65;

15 # HTTPS server

16

17 server {

18 listen 8001 ssl proxy_protocol;

19 server_name www.proxy1.com proxy1.com;

20

21 set_real_ip_from 127.0.0.1;

22 real_ip_header proxy_protocol;

23

24 # RSA-Zertifikat und Schlüssel

25 ssl_certificate /home/okan/nginx2/certs/nginx-selfsigned.crt;

26 ssl_certificate_key /home/okan/nginx2/private/nginx-selfsigned.key;

27

28 # DSA-Zertifikat und Schlüssel

29 ssl_certificate /home/okan/nginx2/certs/server-dss.crt;

30 ssl_certificate_key /home/okan/nginx2/private/server-dss.key;

31

32 # DH-Parameter für ADH-Ciphers

33 ssl_dhparam /home/okan/nginx2/dhparam/dhparam.pem;

34

35 ssl_session_cache shared:SSL:1m;

36 ssl_session_timeout 5m;

37

38 ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;

39 ssl_ciphers ALL:eNULL;

40 ssl_prefer_server_ciphers on;

41

42 location / {

43

44 proxy_pass http://127.0.0.1:5000; # Forward to Flask app

45 proxy_set_header SSL-PROTOCOL $ssl_protocol;

46 proxy_set_header SSL-CIPHER $ssl_cipher;

47 proxy_set_header Host $host;

48 proxy_set_header X-Real-IP $remote_addr;

49 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

50 proxy_set_header X-Forwarded-Proto $scheme;

51 }

52 }

53 }

A.5 Flask Application Code

1 from flask import Flask, request, render_template_string, render_template

2 from cryptography.hazmat.primitives.ciphers.aead import AESGCM

3 from cryptography.hazmat.primitives import hashes

4 from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

5 from cryptography.hazmat.backends import default_backend

6 from datetime import datetime

7 import binascii

8 import os

9

10

11 app = Flask(__name__)

12

13 password = b"tls_testing_password"
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14 salt = b'tls_testing_salt'

15 kdf = PBKDF2HMAC(

16 algorithm=hashes.SHA256(),

17 length=16,

18 salt=salt,

19 iterations=100000,

20 backend=default_backend()

21 )

22 key = kdf.derive(password)

23

24 def decrypt(encrypted_data, key):

25 """Decrypts AES-GCM encrypted data with a given key"""

26 data = binascii.unhexlify(encrypted_data)

27 nonce = data[:12] # Extract the nonce

28 ciphertext = data[12:] # Extract the ciphertext

29 aesgcm = AESGCM(key)

30 try:

31 decrypted_data = aesgcm.decrypt(nonce, ciphertext, None)

32 return decrypted_data.decode() # Decode assuming it was a UTF-8 string

33 except Exception as e:

34 print(f"Decryption failed: {e}")

35 return None

36

37 def encrypt(data, key):

38 """Encrypts data using AES-GCM with a given key"""

39 aesgcm = AESGCM(key)

40 nonce = os.urandom(12)

41 ciphertext = aesgcm.encrypt(nonce, data.encode(), None)

42 return binascii.hexlify(nonce + ciphertext).decode()

43

44 @app.route('/path/<encrypted_path_hex>', methods=['GET'])

45 def dynamic_path(encrypted_path_hex):

46 decrypted_path_elements = decrypt(encrypted_path_hex, key)

47

48 # Zusätzliche Informationen

49 client_ip = request.remote_addr

50

51 user_agent = request.headers.get('User-Agent', 'Unknown')

52 tls_version = request.headers.get('SSL-PROTOCOL', 'Unknown') # TLS-Version aus Header

53 cipher_suite = request.headers.get('SSL-CIPHER', 'Unknown') # Cipher Suite aus Header

54 vHost= request.headers.get('Host', 'Unknown')

55 x_real_ip=request.headers.get('X-Real-IP', 'Unknown')

56 x_forwarded_for=request.headers.get('X-Forwarded-For', 'Unknown')

57

58 if decrypted_path_elements:

59

60 # generate iframe path

61 inside_path = f"https://185.73.23.156/c/{encrypt(encrypted_path_hex,key)}"

62

63 # logging acces details

64 with open('access_log.txt', 'a') as log:

65 log.write(

66 f"Accessed path: {decrypted_path_elements}\n"

67 f"Client IP: {client_ip}\n"

68 f"x_real_ip: {x_real_ip}\n"

69 f"x_forwarded_for: {x_forwarded_for}\n"

70 f"Host: {vHost}\n"

71 f"User-Agent: {user_agent}\n"

72 f"TLS Version: {tls_version}\n"

73 f"Cipher Suite: {cipher_suite}\n"

74 f"Timestamp: {datetime.utcnow().isoformat()}\n"

75 f"Encrpted Path: {encrypted_path_hex}\n"
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76 f"Inside Path: {inside_path}\n"

77 f"{'-'*60}\n"

78 )

79

80 response_content = f"""

81 <!DOCTYPE html>

82 <html>

83 <head>

84 <title>Valid Path</title>

85 </head>

86 <body>

87 <h1>Valid path accessed: </h1>

88 <iframe src="{inside_path}" style="width: 100%; height: 300px; border: none;"></iframe>

89

90

91 </body>

92 </html>

93 """

94 return render_template_string(response_content), 200

95 else:

96 return "Invalid request: Page not found.", 404

97

98 @app.route('/c/<encrypted_data>', methods=['GET'])

99 def inside_path(encrypted_data):

100 decrypted_path = decrypt(encrypted_data, key)

101

102 # Zusätzliche Informationen

103 client_ip = request.remote_addr

104 user_agent = request.headers.get('User-Agent', 'Unknown')

105 tls_version = request.headers.get('SSL-PROTOCOL', 'Unknown') # TLS-Version aus Header

106 cipher_suite = request.headers.get('SSL-CIPHER', 'Unknown') # Cipher Suite aus Header

107 vHost = request.headers.get('Host', 'Unknown')

108 x_real_ip=request.headers.get('X-Real-IP', 'Unknown')

109 x_forwarded_for=request.headers.get('X-Forwarded-For', 'Unknown')

110

111 if decrypted_path:

112 # logging access details

113 with open('access_log_inside.txt', 'a') as log:

114 log.write(

115 f"Accessed Main path: {decrypt(encrypted_data,key)}\n"

116 f"Main path Elements: {decrypt(decrypt(encrypted_data,key),key)}\n"

117 f"Client IP: {client_ip}\n"

118 f"x_real_ip: {x_real_ip}\n"

119 f"x_forwarded_for: {x_forwarded_for}\n"

120 f"Host: {vHost}\n"

121 f"User-Agent: {user_agent}\n"

122 f"TLS Version: {tls_version}\n"

123 f"Cipher Suite: {cipher_suite}\n"

124 f"Timestamp: {datetime.utcnow().isoformat()}\n"

125 f"Inside Path Value: {encrypted_data}\n"

126 f"{'-'*60}\n"

127 )

128 return f"This is the inside path for: ", 200

129 else:

130 return "Invalid request: Page not found.", 404

131 #@app.route('/debug')

132 #def debug():

133 # return {

134 # "remote_addr": request.remote_addr,

135 # "x_real_ip": request.headers.get('X-Real-IP'),

136 # "x_forwarded_for": request.headers.get('X-Forwarded-For')

137 # }
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138

139 # Fallback route for invalid paths

140 @app.errorhandler(404)

141 def page_not_found(e):

142 return "Invalid request: Page not found.", 404

143

144 if __name__ == '__main__':

145 app.run(host='0.0.0.0', port=5000)

A.6 Log analysis

1 #!/bin/bash

2

3 access_path=""

4

5 while IFS= read -r line; do

6

7

8 if [[ $line == *"Accessed path:"* ]]; then

9 access_path=$line

10 fi

11

12

13 if [[ $line == *"Cipher Suite:"* ]]; then

14 cipher_suite=$(echo "$line" | awk -F"Cipher Suite: " '{print $2}')

15

16

17 accessed_cipher=$(echo "$access_path" | grep -oP '(?<=cipher=)[^&]+')

18

19

20 if [[ "$accessed_cipher" != "$cipher_suite" ]] && ! [[ "$accessed_cipher" == "eNULL" && "$cipher_suite"

== "ECDHE-RSA-NULL-SHA" ]]; then↩→
21 echo "------------------------------------------------------------"

22 echo "$access_path"

23 echo "$line"

24 echo "Cipher im Accessed Path: $accessed_cipher"

25 echo "Cipher Suite: $cipher_suite"

26 echo "------------------------------------------------------------"

27 fi

28

29 # Access Path zurücksetzen

30 access_path=""

31 fi

32

33 done < access_log.txt

1 #!/bin/bash

2

3

4 access_path=""

5

6 while IFS= read -r line; do

7

8

9 if [[ $line == *"Accessed path:"* ]]; then

10 access_path=$line

11 fi

12

13

14 if [[ $line == *"TLS Version:"* ]]; then

15
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16 tls_version=$(echo "$line" | grep -oP '(?<=TLSv)\d+(\.\d+)?' | tr -d '[:space:]' | tr -d '\r')

17

18

19 accessed_tls=$(echo "$access_path" | grep -oP '(?<=tls=tls)\d+(_\d+)?' | tr '_' '.' | tr -d '[:space:]' |

tr -d '\r')↩→
20

21 if [[ "$accessed_tls" != "$tls_version" ]]; then

22 echo "------------------------------------------------------------"

23 echo "$access_path"

24 echo "$line"

25 echo "TLS im Accessed Path: $accessed_tls"

26 echo "TLS Version: $tls_version"

27 echo "------------------------------------------------------------"

28 fi

29

30 access_path=""

31 fi

32

33 done < access_log.txt

A.7 Server Hello fingerprinting

1 import dpkt

2 import sys

3 import struct

4 import hashlib

5

6 def parse_tls_server_hello(data):

7 if len(data) < 5:

8 return None

9

10 content_type, version, length = struct.unpack('!BHH', data[:5])

11 if content_type != 22: # TLS Handshake

12 return None

13

14 handshake_type = data[5]

15 if handshake_type != 2: # Server Hello

16 return None

17

18 pos = 43 # Skip handshake type, length ...

19 session_id_length = data[pos]

20

21 pos += 1 + session_id_length # Skip session ID

22

23 if pos + 2 > len(data):

24 return None

25

26 selected_cipher_suite = struct.unpack('!H', data[pos:pos+2])[0]

27

28 pos += 2

29 compression_method = data[pos]

30 pos += 1

31

32 if pos + 2 > len(data):

33 return None

34

35 extensions_length = struct.unpack('!H', data[pos:pos+2])[0]

36 pos += 2

37

38 extpos = pos

39
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40 extensions = []

41

42 while pos + 4 <= extpos + extensions_length:

43 ext_type, ext_len = struct.unpack('!HH', data[pos:pos+4])

44 pos += 4 + ext_len

45 extensions.append(ext_type)

46

47 return version, selected_cipher_suite, extensions

48 def process_pcap(file_path):

49 fingerprints = []

50 with open(file_path, 'rb') as f:

51 pcap = dpkt.pcap.Reader(f)

52 for _, buf in pcap:

53 try:

54 ip = dpkt.ip.IP(buf)

55 except Exception as e:

56 print(f"Skipping malformed packet: {e}")

57 continue

58 #print(ip.data)

59 if not isinstance(ip.data, dpkt.tcp.TCP):

60 print("Skipping non-TCP packet")

61 continue

62

63 tcp = ip.data

64

65 if len(tcp.data) > 0:

66 print(f"Processing packet with length: {len(tcp.data)} bytes")

67 fingerprint = parse_tls_server_hello(tcp.data)

68 if fingerprint:

69 print(f"Found TLS Server Hello: Version={hex(fingerprint[0])},

Cipher={hex(fingerprint[1])}, Extensions={[hex(e) for e in fingerprint[2]]}")↩→
70 fingerprints.append(fingerprint)

71

72 with open("Fingerprints.txt", "w") as output_file:

73 for version, cipher, extensions in fingerprints:

74 fingerprint_input = f"{hex(version)}:{hex(cipher)}:{','.join([hex(e) for e in extensions])}"

75 fingerprint = hashlib.sha256(fingerprint_input.encode('utf-8')).hexdigest()

76 output_file.write(f"TLS Version: {hex(version)}, Cipher: {hex(cipher)}, Extensions: {[hex(e) for

e in extensions]} Fingerprint:{fingerprint}\n")↩→
77 print("Results written to Fingerprints.txt")

78

79 if __name__ == "__main__":

80 if len(sys.argv) != 2:

81 print("Usage: python script.py <pcap_file>")

82 sys.exit(1)

83 process_pcap(sys.argv[1])

84

85

86

A.8 Complete List of Tested Cipher Suites
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Table A.1: Successfully Tested Cipher Suites

TLS Version Cipher Suite
TLS 1.3 TLS_AES_256_GCM_SHA384
TLS 1.2 ECDHE-RSA-AES256-GCM-SHA384
TLS 1.2 ECDHE-RSA-CHACHA20-POLY1305
TLS 1.2 ECDHE-ARIA256-GCM-SHA384
TLS 1.2 ECDHE-RSA-AES128-GCM-SHA256
TLS 1.2 ECDHE-ARIA128-GCM-SHA256
TLS 1.2 ECDHE-RSA-AES256-SHA384
TLS 1.2 ECDHE-RSA-CAMELLIA256-SHA384
TLS 1.2 ECDHE-RSA-AES128-SHA256
TLS 1.2 ECDHE-RSA-CAMELLIA128-SHA256
TLS 1.2 ECDHE-RSA-AES256-SHA
TLS 1.2 ECDHE-RSA-AES128-SHA
TLS 1.2 AES256-GCM-SHA384
TLS 1.2 AES256-CCM8
TLS 1.2 AES256-CCM
TLS 1.2 ARIA256-GCM-SHA384
TLS 1.2 AES128-GCM-SHA256
TLS 1.2 AES128-CCM8
TLS 1.2 AES128-CCM
TLS 1.2 ARIA128-GCM-SHA256
TLS 1.2 AES256-SHA256
TLS 1.2 CAMELLIA256-SHA256
TLS 1.2 AES128-SHA256
TLS 1.2 CAMELLIA128-SHA256
TLS 1.2 AES256-SHA
TLS 1.2 CAMELLIA256-SHA
TLS 1.2 AES128-SHA
TLS 1.2 SEED-SHA
TLS 1.2 CAMELLIA128-SHA
TLS 1.0, 1.1, 1.2 ECDHE-RSA-RC4-SHA
TLS 1.0, 1.1, 1.2 AECDH-RC4-SHA
TLS 1.0, 1.1, 1.2 ADH-RC4-MD5
TLS 1.0, 1.1, 1.2 RC4-SHA
TLS 1.0, 1.1, 1.2 RC4-MD5
TLS 1.0, 1.1, 1.2 ECDHE-RSA-DES-CBC3-SHA
TLS 1.0, 1.1, 1.2 AECDH-DES-CBC3-SHA
TLS 1.0, 1.1, 1.2 ADH-DES-CBC3-SHA
TLS 1.0, 1.1, 1.2 DES-CBC3-SHA
TLS 1.0, 1.1, 1.2 ADH-DES-CBC-SHA
TLS 1.0, 1.1, 1.2 DES-CBC-SHA
TLS 1.0, 1.1, 1.2 EXP-EDH-RSA-DES-CBC-SHA
TLS 1.0, 1.1, 1.2 EXP-EDH-DSS-DES-CBC-SHA
TLS 1.0, 1.1, 1.2 EXP-ADH-DES-CBC-SHA
TLS 1.0, 1.1, 1.2 EXP-ADH-RC4-MD5
TLS 1.0, 1.1, 1.2 eNULL
TLS 1.0 ECDHE-RSA-AES256-SHA
TLS 1.0 AECDH-AES256-SHA
TLS 1.0 ADH-AES256-SHA
TLS 1.0 ADH-CAMELLIA256-SHA
TLS 1.0 AES256-SHA
TLS 1.0 CAMELLIA256-SHA
TLS 1.0 ECDHE-RSA-AES128-SHA
TLS 1.0 AECDH-AES128-SHA
TLS 1.0 ADH-AES128-SHA
TLS 1.0 ADH-SEED-SHA
TLS 1.0 ADH-CAMELLIA128-SHA
TLS 1.0 AES128-SHA
TLS 1.0 SEED-SHA
TLS 1.0 CAMELLIA128-SHA
TLS 1.0, 1.1, 1.2 IDEA-CBC-SHA


	Introduction
	Motivation

	Related Work
	Background
	Transport Layer Security
	TLS Interceptions
	Interception Detection Techniques
	Virtual Private Network

	Methodology
	Overview of Approach
	Experimental Setup
	Collection of Data
	Detection Strategy
	Rationale for Expected Access
	Rationale for the Detection Method

	Implementation
	Server Setup
	Client Setup
	Server Implementation
	Client Implementation

	Evaluation and Discussion
	Data Analysis
	Key Findings
	Interpretation
	Additional Connection Statistics
	Limitations
	Implications and Future Directions

	Future Work
	ServerHello Fingerprinting

	Conclusion
	References
	Appendix
	Client Code
	VPN Connection and Script Execution Code
	First Nginx Instance Configuration
	Second Nginx Instance Configuration
	Flask Application Code
	Log analysis
	Server Hello fingerprinting
	Complete List of Tested Cipher Suites


